

Selection Guide Content

POCLAIN HYDRAULICS SOLUTIONS FOR THE MOST DEMANDING MARKETS

Poclain hydraulics specializes in the design, manufacturing and marketing of hydrostatic transmissions.

Our internationally recognized expertise allows us to expand on highly diversified markets such as the construction, agricultural, public works, material handling, industrial, environment and on-road markets. Poclain hydraulics' development is driven by our innovative spirit and our ability to anticipate the needs of a wide range of cutting edge applications.

- > Construction > Material handling
- > Agricultural
- > Mining
- > Forestry
- > Environment > Etc
- > Industry
- > Marine
- > On-Road

A CLOSE PROXIMITY PLAYER THROUGH OUR WORLDWIDE PLANT LOCATIONS

- > 5 Plants in Europe
- > 2 Plants in Asia
- > 1 Plant in America

CZECH REPUBLIC (Motors)

POCLAIN HYDRAULICS S.R.O Kšírová186 619 00 Brno Tel.: +420 543 563 121

CHINA (Motors, Pumps, Valves)

POCLAIN HYDRAULICS CO, LTD Factory Building n° 11, Phase II Shuhui Park N° 275 Qianpu Road, Songjiang District Shanghai 201611 Tel.: +86 21 37 00 34 15

FRANCE (Motors)

POCLAIN HYDRAULICS OPERATIONS VERBERIE Route de Compiègne 60410 Verberie Tel.: +33 3 44 40 77 77

FRANCE (Pistons)

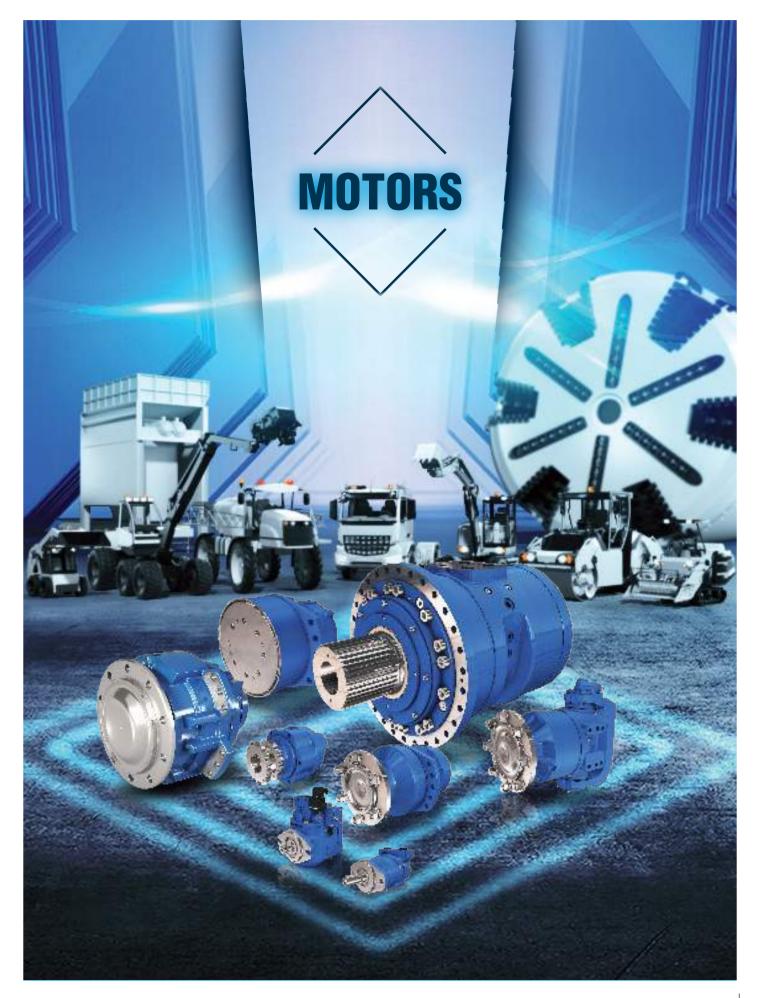
POCLAIN HYDRAULICS SMP 146, avenue du Môle 74460 Marnaz Tel. : +33 4 50 18 32 62

ITALY (Pumps)

POCLAIN HYDRAULICS INDUSTRIALE SRL Via Mavora 109 Loc. Gaggio di Piano 41013 Castelfranco Emilia (MO) Tel.: +39 059 959711

INDIA (Motors)

POCLAIN HYDRAULICS PVT LTD No: 131 / 2, Kothapurinatham Road Mannadipet Commune Panchayat Thiruvandarkoil Pondicherry - 605 102 Tel.: +91 4132641444 / 2641477


SLOVENIA (Valves)

POCLAIN HYDRAULICS D.O.O Industrijska ulica 2 Žiri 4226 Tel.: +386 (0)4 51 59 100

USA (Motors)

POCLAIN HYDRAULICS INC 1300 N Grandview Parkway P.O. Box 801 Sturtevant, WI 53177 Tel.: +1 262 321 0676

		D VERSATIL				3
	S	p.12				
			1		(j.)	
Displacement r	ande	o 15 000 cm³/rev. to 915 cu.in/rev.]	đ	9		
Max. Speed	700 r					
Max. Power	0401					
	240 K	W [322 HP]				
MPACT		272 to 2 812 cm³/rev.	_		WHEEL I	MOTORS 172 to 2 519 cm ³ /re [10.5 to 153 cu.in/r
MPACT	Displacement range	272 to 2 812 cm³/rev. [16.6 to 171.5 cu.in/rev.]	_		isplacement range	172 to 2 519 cm³/re [10.5 to 153 cu.in/r
		272 to 2 812 cm³/rev.	_			172 to 2 519 cm³/re

213 to 750 cm³/rev.

470 rpm

29 kW [39 HP]

[13.0 to 45.7 cu.in/rev.]

SKID-STEER DRIVE

ML

Displacement range

p.48

Max. Speed

Max. Power

420 to 842 cm³/rev.

330 rpm

30 kW [40 HP]

[25.6 to 51.4 cu.in/rev.]

10 | SELECTION GUIDE

SWING DRIVE

MZ

Displacement range

p.44

Max. Speed

Max. Power

Hydraulic Motors High Torque & Radial Pistons

HIGH DISPLACEMENT

Displacement range	7 000 to 30 000 cm³/rev. [426.9 to 1,831 cu.in/rev.]
Max. Speed	100 rpm
Max. Power	500 kW [671 HP]

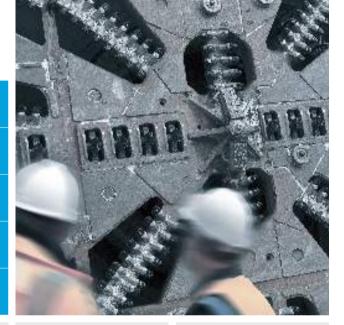
p.52

HYDROBASE FOR WHEEL HUBS **CREEP DRIVE** 627 to 1 248 cm³/rev. 667 to 2 424 cm³/rev. Displacement range Displacement range [38.2 to 76.1 cu.in/rev.] [40.7 to 148.1 cu.in/rev.] MF CDM Max. Speed 150 rpm Max. Speed 315 rpm 41 kW [55 HP] 40 kW [54 HP] Max. Power Max. Power p.56 p.60

Large range of motors Direct drive High radial and axial load capability Single or dual displacement With or without brake Very low noise emission

MODULARITY AND VERSATILITY A SOLUTION FOR EVERY NEED

MS/MSE02 - MSE03 - MS/MSE05 MS/MS08 - MS/MSE11 - MS/MSE18 MS25 - MS35 - MS50 - MS83 - MS125

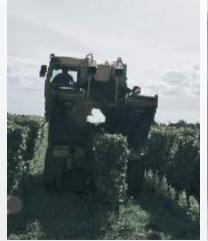

From 172 to 15 000 cm³/rev. [10.5 to 915 cu.in/rev.]

Up to 77 000 N.m [56,792 lbf.ft]

Up to 450 bar [6,530 PSI]

Up to 900 rpm

Up to 240 kW [322 HP]



MOTORS

Performance MS Standard

			First displace	ement*		Se	cond displac	ement**	
	Max. Pressure bar [PSI]	Displacement range cm³/rev [cu.in/rev]	Max. Torque*** N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]	Displacement range cm³/rev [cu.in/rev]	Max. Torque*** N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]
MS02	450 [6,527]	172 - 255 [10.5] - [15.6]	1 800 [1,227]	580	18 [24]	86 - 128 [5.2] - [7.8]	916 [676]	590	12 [16]
MSE02	400 [5,802]	332 - 398 [20.2] - [24.3]	2 500 [1,843]	265	22 [29.5]	166 - 199 [10.1] - [12.1]	1 260 [930]	340	16,5 [22]
MSE03	350 [5,076]	450 - 500 [27.4] - [30.5]	2 780 [2,050]	155	22 [30]	225 - 250 [13.7] - [15.2]	1 390 [1,025]	183	16,5 [22]
MS05	450 [6,527]	260 - 560 [15.9] - [34.2]	4 000 [2,950]	350	29 [39]	130 - 280 [7.9] - [17.1]	2 000 [1,475]	360	19 [25]
MSE05	400 [5,802]	503 - 750 [30.7] - [45.7]	4 770 [3,518]	250	29 [39]	252 - 375 [15.4] - [22.9]	2 390 [1,762]	300	19 [25]
MS08	450 [6,527]	467 - 934 [28.5] - [57.0]	6 690 [4,934]	235	41 [55]	234 - 467 [14.2] - [28.5]	3 345 [2,467]	250	27 [36]
MSE08	400 [5,802]	1 043 - 1 248 [63.6] - [76.1]	7 945 [5,859]	125	41 [55]	522 - 624 [31.8] - [38.1]	3 970 [2,928]	110	27 [36]
MS11	450 [6,527]	730 - 1 259 [44.5] - [76.8]	9 000 [6,638]	200	50 [67]	365 - 630 [22.3] - [38.4]	4 500 [3,319]	200	33 [44]
MSE11	400 [5,802]	1 263 - 1 687 [77.0] - [102.9]	10 700 [7,891]	170	50 [67]	632 - 844 [38.5] - [51.4]	5 370 [3,960]	190	33 [44]
MS18	450 [6,527]	1 091 - 2 099 [66.5] - [128]	15 000 [11,063]	170	70 [94]	546 - 1 050 [33.3] - [64]	7 520 [5,546]	170	47 [63]
MSE18	400 [5,802]	2 340 - 2 812 [142.8] - [171.6]	17 900 [13,202]	90	70 [94]	1 170 - 1 406 [71.4] - [85.8]	8 950 [6,601]	110	47 [63]
MS25	450 [6,527]	2 004- 3 006 [122.3] - [183.4]	21 500 [15,857]	145	90 [121]	1 002- 1 503 [61.1] - [91.7]	10 760 [7,936]	145	60 [80]
MS35	450 [6,527]	2 439 - 4 198 [148.8] - [256]	30 000 [22,126]	140	110 [148]	1 220 - 2 099 [74.4] - [128]	15 000 [11,063]	140	73 [98]
M\$50	450 [6,527]	3 500 - 6 011 [213.5] - [366.6]	43 000 [31,715]	205	140 [188]	1 750 - 3 006 [106.7] - [183.3]	21 528 [15,878]	225	93 [125]
MS83	450 [6,527]	6 679 - 10 019 [407.4] - [611.1]	71 755 [52,924]	200	200 [268]	3 340 - 5 010 [203.7] - [305.5]	35 880 [26,464]	145	135 [181]
MS125	320 - 450 [4,641 - 6,527]	10 000 - 15 000 [69] - [915]	77 000 [56,792]	130	240 [322]	5 000 - 7 500 [305] - [457.4]	53 715 [39,618]	105	160 [215]

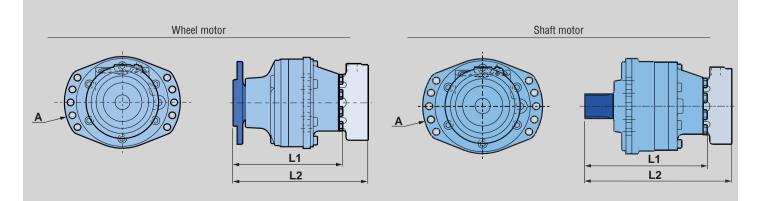
*Available for single or dual displacement motors **Only available for dual displacement motors ***Max. theoretical torque (N.m) : 1/(20 π) x max. displacement (cm³/rev.) x max. pressure (bar)

Dimensions MS Standard

1C : Single displacement

2C : Dual displacement

Wheel motors

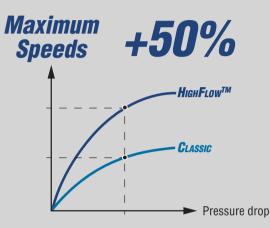

		MS02 MSE02	MSE03	MS05 MSE05	MS08 MSE08	MS11 MSE11	MS18 MSE18	MS25	MS35	MS50	MS83	M\$125
1C	mm	224,7	250	280	315	363	395	455	502	590	591	739
	[in]	[8.85]	[9.84]	[11.02]	[12.40]	[14.29]	[15.55]	[17.91]	[19.76]	[23.23]	[23.26]	[29.09]
2C	mm	255,7	254	293	331	365	413	455	502	590	591	739
	[in]	[10.07]	[10.00]	[11.54]	[13.03]	[14.37]	[16.25]	[17.91]	[19.76]	[23.23]	[23.26]	[29.09]
10	mm	287,2	296	349,1	402,1	427,5	448,7	593,5	639,5	729	780	906
	[in]	[11.30]	[11.65]	[13.74]	[15.83]	[16.83]	[17.66]	[23.36]	[25.17]	[28.70]	[30.71]	[35.67]
2C	mm	318,2	300	362,1	418,1	426,5	458,7	612,5	639,5	729	780	906
	[in]	[12.53]	[11.8]	[14.25]	[16.46]	[16.79]	[18.06]	[24.11]	[25.17]	[28.70]	[30.71]	[35.67]
	mm	235	238	300	335	375	425	485	485	485	555,5	565
	[in]	[9.25]	[9.37]	[11.81]	[13.19]	[14.76]	[16.73]	[19.09]	[19.09]	[19.09]	[21.87]	[22.24]
	kg	34	32	52	84	116	160	270	269	415	546	563
	[lb]	[75]	[70]	[114]	[185]	[255]	[352]	[594]	[592]	[913]	[1,201]	[1,239]
	2C 1C	IC [in] 2C mm [in] 1C mm [in] 2C mm [in] gc mm [in] kg	MSE02 1C mm [in] 224,7 [8.85] 2C mm [in] 255,7 [10.07] 1C mm [in] 287,2 [11.30] 2C mm [in] 287,2 [12.53] mm 287,2 [12.53] kg 34	MSE02 MSE03 1C mm [in] 224,7 [8.85] 250 [9.84] 2C mm [in] 255,7 [10.07] 254 [10.00] 1C mm [in] 287,2 [11.30] 296 [11.65] 2C mm [in] 287,2 [11.30] 296 [11.65] 2C mm [in] 212,53 238 [9.25] mm 235 [9.25] 238 [9.37] kg 34 32	MSE02 MSE03 MSE05 1C mm [in] 224,7 [9.84] [10.02] 2C mm 255,7 [10.07] 254 [293 [11.54] 1C mm 255,7 [10.07] [10.00] [11.54] 1C mm 287,2 [11.30] 296 [11.65] 349,1 [13.74] 1C mm 287,2 [11.30] [11.65] [13.74] 2C mm 318,2 [12.53] 300 [11.8] [14.25] mm 235 [9.37] [18.7] [14.25] mm 235 [9.37] [9.37] [11.81] kg 34 32 52	MSE02 MSE03 MSE05 MSE08 1C mm 224,7 250 280 315 1C [in] [8.85] [9.84] [11.02] [12.40] 2C mm 255,7 254 293 331 1C mm 255,7 254 293 331 1C mm 287,2 296 349,1 402,1 11.53 [11.30] [11.65] [13.74] [15.83] 2C mm 318,2 300 362,1 418,1 [in] [12.53] [11.8] [14.25] [16.46] mm 235 238 300 335 [in] [9.25] [9.37] [11.81] [13.19] kg 34 32 52 84	MSE02 MSE03 MSE05 MSE08 MSE11 1C mm [in] 224,7 [8.85] 250 [9.84] 280 [11.02] 315 [12.40] 363 [14.29] 2C mm [in] 255,7 [10.07] 254 [10.00] 293 [11.54] 331 [13.03] 365 [14.37] 1C mm [in] 287,2 [11.30] 296 [11.65] 349,1 [13.74] 402,1 [15.83] 427,5 [16.83] 2C mm [in] 287,2 [12.53] 296 [11.8] 349,1 [14.25] 402,1 [15.83] 427,5 [16.83] 2C mm [in] 287,2 [12.53] 296 [11.8] 349,1 [14.25] 418,1 [16.46] 426,5 [16.79] mm [in] 235 [9.25] 238 [9.37] 300 [11.81] 335 [13.19] 375 [14.76] kg 34 32 52 84 116	MSE02 MSE03 MSE05 MSE08 MSE11 MSE18 1C mm 224,7 250 280 315 363 395 2C mm 255,7 254 293 331 365 413 1C mm 287,2 296 349,1 11.54] [13.03] [14.37] [16.25] 1C mm 287,2 296 349,1 402,1 427,5 448,7 1C mm 287,2 296 349,1 15.83] [16.83] [17.66] 2C mm 287,2 296 349,1 402,1 427,5 448,7 [in] [11.30] [11.65] [13.74] [15.83] [16.83] [17.66] 2C mm 318,2 300 362,1 418,1 426,5 458,7 [in] [12.53] [11.8] [14.25] [16.46] [16.79] [18.06] 2C mm 235 238 300 <t< td=""><td>MSE02 MSE03 MSE05 MSE08 MSE11 MSE18 MS25 1C mm 224,7 250 280 315 363 395 455 1C [in] [8.85] [9.84] [11.02] [12.40] [14.29] [15.55] [17.91] 2C mm 255,7 254 293 331 365 413 455 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 1C mm 287,2 296 349,1 402,1 426,5 458,7 593,5 11.30 [11.65] [13.74] [15.83] [16.83] [17.66] [23.36] 2C mm 318,2 300 362,1 418,1 426,5 458,7 612,5 [in] [12.53] [11.8] [14.25] [16.46] [16.79] [18.06] [24.11] mm 235 238 300 335 375 425</td><td>MSE02 MSE03 MSE05 MSE08 MSE11 MSE18 MS25 MS35 10 mm 224,7 250 280 315 363 395 455 502 20 mm 255,7 254 293 331 365 413 455 502 20 mm 255,7 254 293 331 365 413 455 502 10 mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 10 mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 11.02 [11.65] [13.74] [15.83] [16.83] [17.66] [23.36] [25.17] 20 mm 318,2 300 362,1 418,1 426,5 458,7 612,5 639,5 21.1 [12.53] [11.8] [14.25] [16.46] [16.79] [18.06] [24.11] <td< td=""><td>MSE02 MSE03 MSE05 MSE08 MSE11 MSE18 MS25 MS35 MS50 1C mm 224,7 250 280 315 363 395 455 502 590 2C mm 255,7 254 293 331 365 413 455 502 590 1C mm 287,2 254 293 331 365 413 455 502 590 1C mm 287,2 294 293 331 16.55 117.91 [19.76] [23.23] 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 2C mm 318,2 300 362,1 418,1 426,5 458,7 612,5 639,5 729 21 [i</td><td>MSE02 MSE03 MSE05 MSE08 MSE11 MSE18 MS25 MS35 MS50 MS83 1C mm 224,7 250 280 315 363 395 455 502 590 591 [23.23] [23.26] 2C mm 255,7 254 293 331 365 413 455 502 590 591 [23.26] 2C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 780 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 780 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 780 1C mm 211.65 [11.81] [14.25] [16.46] [16.79] [18.06] [24.11] [25.17] [28.70] [30.71] 2C<!--</td--></td></td<></td></t<>	MSE02 MSE03 MSE05 MSE08 MSE11 MSE18 MS25 1C mm 224,7 250 280 315 363 395 455 1C [in] [8.85] [9.84] [11.02] [12.40] [14.29] [15.55] [17.91] 2C mm 255,7 254 293 331 365 413 455 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 1C mm 287,2 296 349,1 402,1 426,5 458,7 593,5 11.30 [11.65] [13.74] [15.83] [16.83] [17.66] [23.36] 2C mm 318,2 300 362,1 418,1 426,5 458,7 612,5 [in] [12.53] [11.8] [14.25] [16.46] [16.79] [18.06] [24.11] mm 235 238 300 335 375 425	MSE02 MSE03 MSE05 MSE08 MSE11 MSE18 MS25 MS35 10 mm 224,7 250 280 315 363 395 455 502 20 mm 255,7 254 293 331 365 413 455 502 20 mm 255,7 254 293 331 365 413 455 502 10 mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 10 mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 11.02 [11.65] [13.74] [15.83] [16.83] [17.66] [23.36] [25.17] 20 mm 318,2 300 362,1 418,1 426,5 458,7 612,5 639,5 21.1 [12.53] [11.8] [14.25] [16.46] [16.79] [18.06] [24.11] <td< td=""><td>MSE02 MSE03 MSE05 MSE08 MSE11 MSE18 MS25 MS35 MS50 1C mm 224,7 250 280 315 363 395 455 502 590 2C mm 255,7 254 293 331 365 413 455 502 590 1C mm 287,2 254 293 331 365 413 455 502 590 1C mm 287,2 294 293 331 16.55 117.91 [19.76] [23.23] 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 2C mm 318,2 300 362,1 418,1 426,5 458,7 612,5 639,5 729 21 [i</td><td>MSE02 MSE03 MSE05 MSE08 MSE11 MSE18 MS25 MS35 MS50 MS83 1C mm 224,7 250 280 315 363 395 455 502 590 591 [23.23] [23.26] 2C mm 255,7 254 293 331 365 413 455 502 590 591 [23.26] 2C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 780 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 780 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 780 1C mm 211.65 [11.81] [14.25] [16.46] [16.79] [18.06] [24.11] [25.17] [28.70] [30.71] 2C<!--</td--></td></td<>	MSE02 MSE03 MSE05 MSE08 MSE11 MSE18 MS25 MS35 MS50 1C mm 224,7 250 280 315 363 395 455 502 590 2C mm 255,7 254 293 331 365 413 455 502 590 1C mm 287,2 254 293 331 365 413 455 502 590 1C mm 287,2 294 293 331 16.55 117.91 [19.76] [23.23] 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 2C mm 318,2 300 362,1 418,1 426,5 458,7 612,5 639,5 729 21 [i	MSE02 MSE03 MSE05 MSE08 MSE11 MSE18 MS25 MS35 MS50 MS83 1C mm 224,7 250 280 315 363 395 455 502 590 591 [23.23] [23.26] 2C mm 255,7 254 293 331 365 413 455 502 590 591 [23.26] 2C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 780 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 780 1C mm 287,2 296 349,1 402,1 427,5 448,7 593,5 639,5 729 780 1C mm 211.65 [11.81] [14.25] [16.46] [16.79] [18.06] [24.11] [25.17] [28.70] [30.71] 2C </td

* Wheel motor with the longest multidiscs brake. ** Full displacement wheel motor with multidiscs brake.

Shaft motors

			MS02 MSE02	MSE03	MS05 MSE05	MS08 MSE08	MS11 MSE11	MS18 MSE18	MS25	MS35	M\$50	MS83	M\$125
L1 -	10	mm [in]	258,1 [10.16]	-	308 [12.13]	340 [13.38]	380 [14.96]	432 [17.00]	525 [20.67]	580 [22.83]	678 [26.69]	822 [32.36]	822 [32.36]
LI –	2C	mm [in]	289,5 [11.4]	-	324 [12.76]	356 [14.02]	398 [15.28]	451 [17.76]	525 [20.67]	580 [22.83]	678 [26.69]	822 [32.36]	822 [32.36]
L2	1C	mm [in]	310,5 [12.22]	-	377 [14.84]	392 [15.43]	458,5 [18.05]	532,3 [20.95]	664 [26.14]	717 [28.22]	817 [32.16]	955 [37.60]	962 [37.87]
max.*	2C	mm [in]	338 [13.3]	-	393 [15.47]	409 [16.10]	458,5 [18.05]	532,3 [20.95]	664 [26.14]	717 [28.22]	817 [32.16]	955 [37.60]	962 [37.87]
A dia. max.		mm [in]	235 [8.07]	-	300 [11.81]	335 [13.19]	375 [14.76]	425 [16.73]	485 [19.09]	425 [16.73]	485 [19.09]	565 [22.24]	565 [22.24]
Weight max.**		kg [lb]	36 [79]	-	55 [121]	85 [187]	114 [251]	152 [334]	255 [561]	269 [592]	370 [814]	527 [1,159]	573 [1,261]

* Shaft motor with the longest multidiscs brake. ** Full displacement shaft motor with multidiscs brake.



MS

HighFlow[™]

Maximum productivity with a minimum consumption

The MS HighFlow[™] motor range has all the successful qualities of the MS Classic range. They are: modular, robust and they offer additional performance in term of speed.

At an equivalent pressure drop, a HighFlow™ motor can reach higher speeds.

At an equivalent speed, a HighFlow™ motor reduces pressure drops.

Performance MS HighFlow™

			First displace	ement*		Se	cond displac	ement**	
	Max. Pressure bar [PSI]	Displacement range cm³/rev [cu.in/rev]	Max. Torque*** N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]	Displacement range cm³/rev [cu.in/rev]	Max. Torque*** N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]
MS02	450 [6,527]	172 - 255 [10.5] - [15.6]	1 800 [1,227]	850	18 [24]	86 - 128 [5.2] - [7.8]	916 [676]	900	12 [16]
MSE02	400 [5,802]	332 - 398 [20.2] - [24.3]	2 500 [1,843]	440	22 [29.5]	166 - 199 [10.1] - [12.1]	1 260 [930]	470	16,5 [22]
MS05	450 [6,527]	260 - 560 [15.9] - [34.2]	4 000 [2,950]	700	50 [67]	130 - 280 [7.9] - [17.1]	2 000 [1,475]	630	30 [40]
MSE05	400 [5,802]	503 - 750 [30.7] - [45.7]	4 770 [3,518]	380	50 [67]	252 - 375 [15.4] - [22.9]	2 390 [1,762]	370	30 [40]
MS08	450 [6,527]	467 - 934 [28.5] - [57.0]	6 690 [4,934]	450	41 [55]	234 - 467 [14.2] - [28.5]	3 345 [2,467]	450	27 [36]
MSE08	400 [5,802]	1 043 - 1 248 [63.6] - [76.1]	7 945 [5,859]	210	41 [55]	522 - 624 [31.8] - [38.1]	3 970 [2,928]	220	27 [36]

*Available for single or dual displacement motors

Only available for dual displacement motors *Max. theoretical torque (N.m) : $1/(20 \pi) \times max$. displacement (cm³/rev.) x max. pressure (bar)

Symmetrical 2-displacement Identical performance in both rotation directions (not available for MS02-E02)

Distribution «HighFlow[™]»

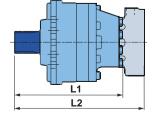
Reduced pressure drop

Dimensions MS HighFlow™

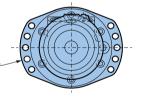
1C : One displacement

Reinforced lug mounting Withstands heavy loads

2C : Dual displacement

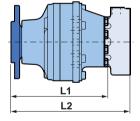

Wheel motors

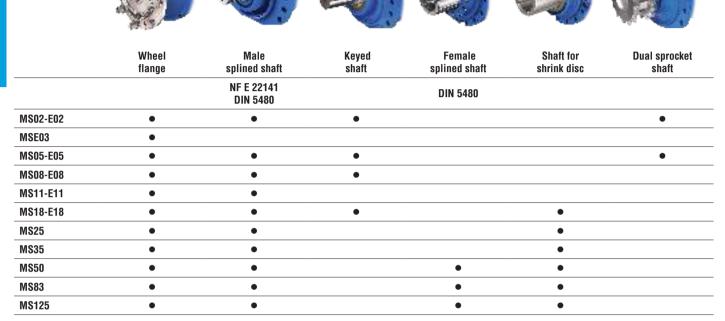
			MS02 MSE02	MS05 MSE05	MS08 MSE08
L1 -	10	mm [in]	247,9 [9.76]	312 [12.28]	295 [11.61]
	2C	mm [in]	255,7 [10.07]	332 [13.07]	336,8 [13.26]
L2	10	mm [in]	310,4 [12.22]	380,5 [14.98]	383,2 [15.08]
max.*	2C	mm [in]	318,2 [12.53]	400,5 [15.76]	425 [16.73]
A dia. max.		mm [in]	235 [9.25]	300 [11.81]	335 [13.19]
Weight max.**		kg [lb]	39,5 [87]	57,5 [127]	89,5 [197]


* Wheel motor with the longest multidiscs brake. ** Full displacement wheel motor with multidiscs brake.

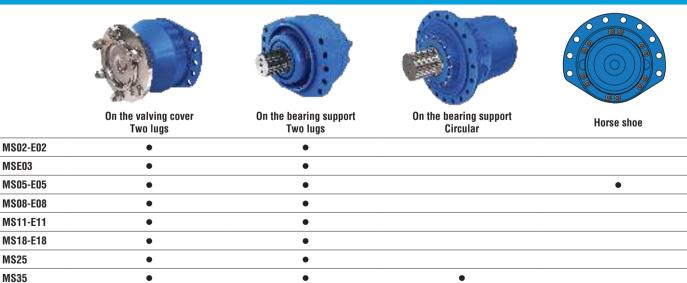
Shaft motors

			MS02 MSE02	MS05 MSE05	MS08 MSE08
L1 -	10	mm [in]	258,1 [10.16]	308 [12.13]	340 [13.38]
	2C	mm [in]	289,5 [11.4]	324 [12.76]	356 [14.02]
L2	1C	mm [in]	310,5 [12.22]	400 [15.75]	392 [15.43]
max.*	2C	mm [in]	338 [13.3]	416 [16.38]	409 [16.10]
A dia. max.		mm [in]	235 [8.07]	300 [11.81]	335 [13.19]
Weight max.**		kg [lb]	41,5 [91]	60,5 [133]	90,5 [199]


One piece cover For greater resistance to the most extreme environmental conditions (available from MS02 to MS08 unbraked motors)


Flat port

high pressure port


To flange a valve directly on the

Bearing support types

Chassis fixation types

•

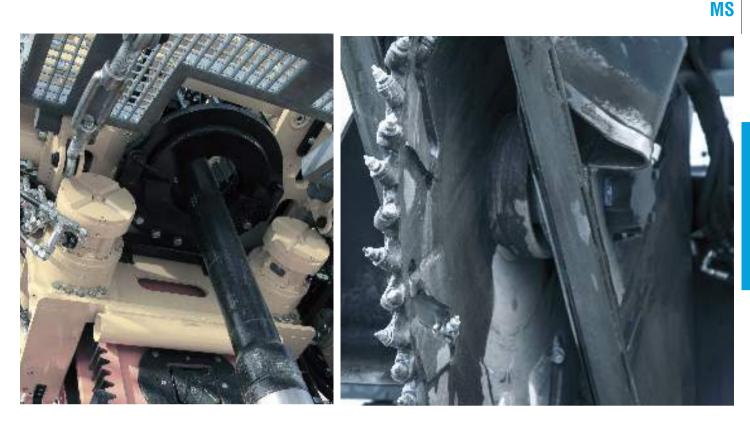
٠

MSE03

MS25

MS35

MS50


MS83

MS125

۲

•

•

PHAST PROGRAM

Fast delivery

Poclain Hydraulics is committed to supplying a number of standard motors **within 15 business days**, excluding transport.

This delivery time applies to any order of one to four identical hydraulic motors of a given size.

Making their selection from a predetermined list of motors, machine manufacturers can choose from wheel motors or shaft motors, in a fixed displacement or double displacement version, with or without a brake. All motors are equipped with a pre-disposition for speed sensor. Pre-configured motors are equipped to guarantee a maximum level of performance.

Motor ty	pes								
MS02-E02	MS05-E05	MS08-E08	MS11-E11	MS18-E18	MS35	MS50	MS83	MS125	MI250
•	•	٠	•	٠	•	•	•	•	•

More information > Page162 Visit our dedicated web page www.poclain-hydraulics.com/en/services/phast

Brakes

Multidisc parking brake mounted at the rear of the motor

- P brake: brake with standard rear plate
- T brake: brake with reinforced rear plate
- Parking brake release pressure: 12 to 30 bar [174 to 435 PSI]

Max. parking braking torque

	N.m [lb.ft]	MS02 MSE02	MSE03	MS05 MSE05	MS08 MSE08	MS11 MSE11	MS18 MSE18	MS25	M\$35	MS50	MS83	MS125
T03	2 500 [1,840]	•	٠									
T04	4 220 [3,110]			٠								
T08	5 620 [4,150]				•							
T09	9 000 [6,640]				٠							
T12	11 840 [8,730]					٠	٠		٠			
T19	18 600 [13,720]						٠		•			
P21	20 500 [15,120]							•	•	•		
T42	25 000 [18,440]							٠	•	٠		
T50	30 000 [22,130]							•	•	•		
T83	42 000 [30,980]									•		
T80	72 000 [53,104]										•	٠

Multidisc parking brake mounted in the bearing support

- Parking brake release pressure: 16 to 30 bar [232 to 435 PSI]
- Negative brake

Mini. parking braking torque

	N.m [lb.ft]	M\$05/E05	MS11/E11	MS18/E18	MS35
P05	4 500 [3,320]	٠			
P17	16 000 [11,801]		٠		
P20	20 000 [14,751]			•	٠
P27	19 800 [14,604]			•	٠

Multidisc service brake mounted in the bearing support

- Pressure to obtain max. service braking torque: 120 bar [1,740 PSI]
- Positive brake

Average service braking torque

	N.m [lb.ft]	MS11/E11	MS18/E18	MS35
S17	22 000 [16,226]	٠		
S20	25 000 [18,439]		٠	٠

Multidisc parking and service brake mounted in the bearing support

- Parking brake release pressure: 100 to 130 bar [1,450 to 1,885 PSI]
- Negative brake
- Pressure to obtain max. service braking torque: 70 bar [1,015 PSI]
- Positive brake

Mini. parking and average service braking torque

	Parking	Service		
	N.m [lb.ft]	N.m [lb.ft]	MS18/E18	MS35
C27	18 000 [13,276]	32 000 [23,602]	٠	٠

MS18 with S20/P20 brake

MS18 with C27 brake

Drum brake

Friction surface	Max. parking braking torque	Max. service braking torque								
mm	N.m [lb.ft]	N.m [lb.ft]	MS02 MSE02	MS05 MSE05	MS08 MSE08	MS11 MSE11	MS18 MSE18	MS25	MS35	M\$50
200 x 40	1 300 [959]	1 300 [959]	•							
203 x 60	2 750 [2,028]	2 750 [2,028]	•							
250 x 60	5 000 [3,688]	5 000 [3,688]		•						
270 x 60	6 000 [4,425]	6 000 [4,425]			٠					
315 x 80	12 000 [8,851]	12 000 [8,851]			٠	•				
350 x 60	11 000 [8,113]	11 000 [8,113]					٠			
432 x 102	27 000 [19,914]	27 000 [19,914]					٠	٠	٠	•

Caliper brake

Max. service	braking	torque
--------------	---------	--------

mm	N.m [lb.ft]	MS02 MSE02
Dia. 302	1 930 [1,423]	٠

MS35 with drum brake

BOOSTED BRAKE

More security for self-propelled machines

Improve the braking performance of self-propelled machines by using the entirely hydrostatic braking capacity of hydraulic motors. The technology - Boosted Brake - meets the braking requirements for machines running at 40 kph [24.8 mph].

On a self-propelled machine running at 40 kph [24.8 mph] the hydrostatic brake must be combined with a friction brake to meet European regulations of deceleration. Poclain Hydraulics has developed a new technology - Boosted Brake - to increase the hydrostatic braking capacity of self-propelled machines.

Motor sizes

Optional features

Temperature control

	MS02-E02	MSE03	MS05-E05	MS08-E08	MS11-E11	MS18-E18	MS25	MS35	MS50	MS83	MS125
Exchange valve	•		•	•	•	٠		٠			
High efficiency (zero clearance pistons/ring)	٠	•	•	•	٠	•	•	•	•	•	•
Additional case flushing port	•	٠	٠	•	٠	٠	٠	٠	٠	•	٠

Speed

MOTORS

	MS02-E02	MSE03	MS05-E05	MS08-E08	MS11-E11	MS18-E18	MS25	MS35	MS50	M\$83	MS125
High speed / Low pressure drop (Butterfly valving)	•	•	•	•	•	•	٠	•	٠	•	•
Speed sensor	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•

Reinforcement

	MS02-E02	MSE03	M\$05-E05	MS08-E08	MS11-E11	MS18-E18	MS25	MS35	MS50	M\$83	MS125
Extra long life (Diamond™)	٠	٠	٠	•	٠	٠	٠	•	٠	•	•
PEEK bushing (against high temperature)	٠	•	•	•	•	٠	•	•	•	•	•
Reinforced back plate	٠	٠	٠	•	٠	٠	٠	٠	٠	•	•
Monobloc cover			•	•							

High pressure connection

	MS02-E02	MSE03	MS05-E05	MS08-E08	MS11-E11	MS18-E18	MS25	MS35	M\$50	MS83	MS125
SAE Flange			•	•	٠	•	٠	٠	٠	٠	٠
Metric	•		٠	•	•	٠		٠			
UNF	•	٠	٠	•	٠	٠		٠			
Manifold interface			٠	•	٠	٠				٠	٠
GAS	٠	٠	٠	٠	٠	٠		•			٠

Hollow shaft (only for splined shaft motor)

MS02-E02	MSE03	MS05-E05	MS08-E08	MS11-E11	MS18-E18	MS25	M\$35	MS50	MS83	MS125
•		٠	•	٠	٠	٠	٠	٠	٠	٠

TWIN-LOCK™ : FULLY HYDROSTATIC ANTI-SKID SYSTEM

Increase the off-road capability of your machines

Wheel adherence is a critical factor with off road vehicles. Lose adequate wheel contact with the ground and you can lose control of your machine, put it temporarily out of service, cause premature tire wear, dramatically increase fuel consumption or churn up the site. Poclain Hydraulics, a specialist in hydrostatic transmission, has designed and developed Twin-Lock[™] to increase the performance of its hydrostatic drive systems on difficult ground conditions and steep gradients.

Motor sizes

Torque arms and shrink discs

To ease the integration of our motors into your machines, Poclain Hydraulics can supply motors with adapted torque arms and shrink discs.

MS125 motor with shrink discs

Higher speed and power High efficiency One, dual, three or four displacements With or without brake Compactness

MOTORS

HIGH PERFORMANCE MOTORS HIGH PERFORMANCE

MHP11 • MHP13 • MHP17 MHP20 • MHP27

From 933 to 3 526 cm³/rev. [56.9 to 215.2 cu.in/rev.]

Up to 28 059 N.m [20,695 lbf.ft]

Up to 500 bar [7,252 PSI]

Up to 548 rpm

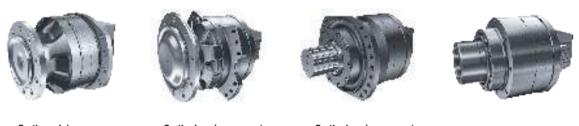
Up to 280 kW [375 HP]

Performance

		Max. Pressure bar [PSI]	Max.Speed RPM	Displacement range cm³/rev [cu.in/rev]	Max. Torque* N.m [lbf.ft]	Max. Power** kW [HP]
	MHP11	450 [6,527]	324	933 - 1 401 [56.9] - [85.5]	10 000 [7,376]	104 [139]
	MHP13	500 [7,252]	520	900 - 1 542 [54.9] - [94.1]	12 258 [9,041]	151 [202]
Single displacement motors	MHP17	500 [7,252]	379	1 200 - 2 238 [73.2] - [136.6]	17 792 [13,123]	249 [334]
	MHP20	500 [7,252]	505	1 416 - 2 427 [86.4] - [148.1]	19 313 [14,244]	200 [268]
	MHP27	500 [7,252]	340	1 893 - 3 526 [115.5] - [215.2]	28 059 [20,695]	280 [375]
	MHP11	450 [6,527]	318	311 - 1 401 [19.0] - [85.5]	10 000 [7,376]	106 [142]
	MHP13	500 [7,252]	548	300 - 1 542 [18.3] - [136.6]	12 258 [9,041]	158 [212]
Dual displacements motors***	MHP17	500 [7,252]	398	400 - 2 238 [24.4] - [85.4]	17 792 [13,123]	241 [323]
	MHP20	500 [7,252]	520	531 - 2 427 [32.4] - [148.1]	19 313 [14,244]	190 [255]
	MHP27	500 [7,252]	345	710 - 3 526 [32.4] - [215.2]	28 059 [20,695]	230 [308]
	MHP11	450 [6,527]	293	311 - 1 401 [19.0] - [85.5]	10 000 [7,376]	105 [141]
	MHP13	500 [7,252]	491	300 - 1 542 [18.3] - [136.6]	12 258 [9,041]	154 [206]
Three displacements motors	MHP17	500 [7,252]	360	400 - 2 238 [24.4] - [85.4]	17 792 [13,123]	250 [335]
	MHP20	500 [7,252]	480	354 - 2 427 [21.6] - [148.1]	19 313 [14,244]	175 [235]
	MHP27	500 [7,252]	330	473 - 3 526 [28.9] - [215.2]	28 059 [20,695]	215 [288]
Four diaplacements motors	MHP20	500 [7,252]	435	354 - 2 427 [21.6] - [148.1]	19 313 [14,244]	175 [235]
Four displacements motors	MHP27	450 [6,527]	316	473 - 3 526 [28.9] - [215.2]	28 059 [20,695]	215 [288]

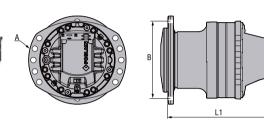
*Max. theoretical torque (N.m) : 1/(20 π) x max. displacement (cm³/rev.) x max. pressure (bar) **Max. power obtained at max. speed *** Symetrical valving available in configuration without boosted brake

Bearing support types



	Wheel flange	Wheel flange service brake	Wheel flange parking brake	Wheel flange combined brake	Male splined shaft	Male splined shaft parking brake	Female splined shaft	Shaft for shrink disc
					NF-E22-141 DIN 5480	NF-E22-141 DIN 5480	DIN 5480	
MHP11	٠	•	٠		٠	•		
MHP13	٠	•	•		٠	•		
MHP17	٠	•	•		٠	•		
MHP20	٠	•	٠	•	٠	•	•	٠
MHP27	٠	•	•	•	٠	•	٠	٠

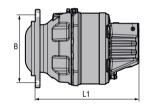
Chassis fixation types


	On the valving cover Two lugs	On the bearing support Four lugs	On the bearing support Two lugs	On the bearing support
MHP11	٠		•	
MHP13	•		•	
MHP17	•		•	
MHP20	•	•	•	•
MHP27	•	٠	•	•

Dimensions

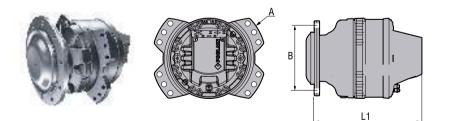
Thanks to its compactness and modularity, the integration of the MHP motor on customers machine is more easily facilitated, which helps to cut design and assembly cost for the OEMs, while allowing them to offer versatile and customized solutions to their end-customers.

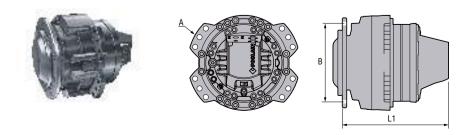
Wheel flange motor



		MHP11	MHP13 MHP17	MHP20 MHP27
L1 max.	mm	360,4	387,4	458,1
	[in]	[14.19]	[15.25]	[18.03]
dia. A max.	mm	377	377	425
	[in]	[14.84]	[14.84]	[16.73]
dia. B max.	mm	275	275	275
	[in]	[10.83]	[10.83]	[10.83]
Weight max.	kg	-	-	170
	[lb]	[-]	[-]	[375]

Wheel flange motor with P17-P20 parking brake or S17-S20 service brake

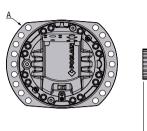


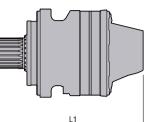


		MHP11 (P17 - S17) MHP17 (P17 - S17)		MHP20 MHP27 (P20-S20)
L1 max.	mm	392,3	420,4	430,7
	[in]	[15.44]	[16.55]	[16.96]
dia. A max.	mm	377	377	425
	[in]	[14.84]	[14.84]	[16.73]
dia. B max.	mm	275	275	335
	[in]	[10.83]	[10.83]	[13.19]
Weight max.	kg	-	-	-
	[lb]	[-]	[-]	[-]

Wheel flange motor with P27 parking brake

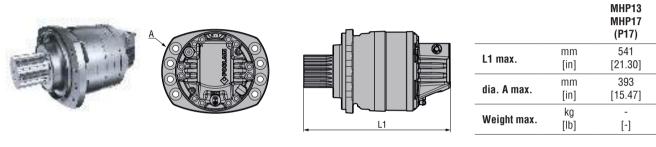
Wheel flange motor with C27 combined brake

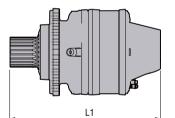

		MHP20 MHP27
L1 max.	mm [in]	456,1 [17.96]
dia. A max.	mm [in]	483 [19.01]
dia. B max.	mm [in]	335 [13.19]
Weight max.	kg [lb]	231 [509]


		MHP20 MHP27
L1 max.	mm [in]	456,1 [17.96]
dia. A max.	mm [in]	482 [18.98]
dia. B max.	mm [in]	335 [13.19]
Weight max.	kg [lb]	240 [529]

MOTORS

Male splined shaft motor




		MHP13 MHP17	MHP20 MHP27		
L1 max.	mm	444	568		
	[in]	[17.48]	[22.36]		
dia. A max.	mm	375	425		
	[in]	[14.76]	[16.73]		
Weight max.	kg	-	136		
	[lb]	[-]	[299]		

Male splined shaft motor with P17-P20 parking brake

Male splined shaft motor with P27 parking brake

		MHP20 MHP27
L1 max.	mm [in]	599 [23.58]
dia. A max.	mm [in]	425 [16.73]
Weight max.	kg [lb]	230 [507]

mm

[in]

mm

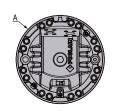
[in]

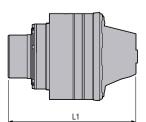
kg

[lb]

L1 max.

dia. A max.


Weight max.


Female splined shaft motor

Shrink disc motor

L1

		MHP20 MHP27
L1 max.	mm [in]	495 [19.49]
dia. A max.	mm [in]	340 [13.38]
Weight max.	kg [lb]	157 [346]

MHP20 MHP27 502

[19.76]

340

[13.38]

157

[346]

Brakes

Multidisc parking brake mounted in the bearing support

- Parking brake release pressure: 16 to 30 bar [232 to 435 PSI]
- Negative brake

Mini. parking braking torque

	N.m [lb.ft]	MHP11	MHP13	MHP17	MHP20	MHP27
P17	16 000 [11,801]	٠	•	•		
P20	21 700 [16,005]				•	•
P27	29 200 [21,537]				•	٠

MHP13/17 with S17 brake

- Positive brake

Multidisc service brake mounted in the bearing support

- Pressure to obtain max. service braking torgue: 120 bar [1,740 PSI]

Average service braking torque

	N.m [lb.ft]	MHP11	MHP13	MHP17	MHP20	MHP27
\$17	21 300 [15,710]	•	٠	٠		
S20	25 000 [18,439]				•	•

Multidisc combined brake mounted in the bearing support or in the cover

The C27 combined brake available on MHP 20 and MHP 27 motors, combines service and parking brake ability and offers powerful and reliable braking performance thanks to its closed design (wet discs technology) not sensitive to external pollution.

- Parking brake release pressure: 100 to 130 bar [1,450 to 1,885 PSI]
- Negative brake
- Pressure to obtain max. service braking torque: 70 bar [1,015 PSI]
- Positive brake

Mini. parking and average braking torque

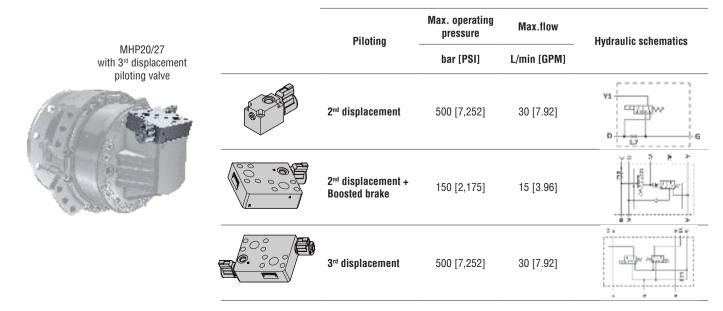
	Parking	Service		
	N.m [lb.ft]	N.m [lb.ft]	MHP20	MHP27
C27	18 000 [13,276]	32 000 [23,602]	٠	•

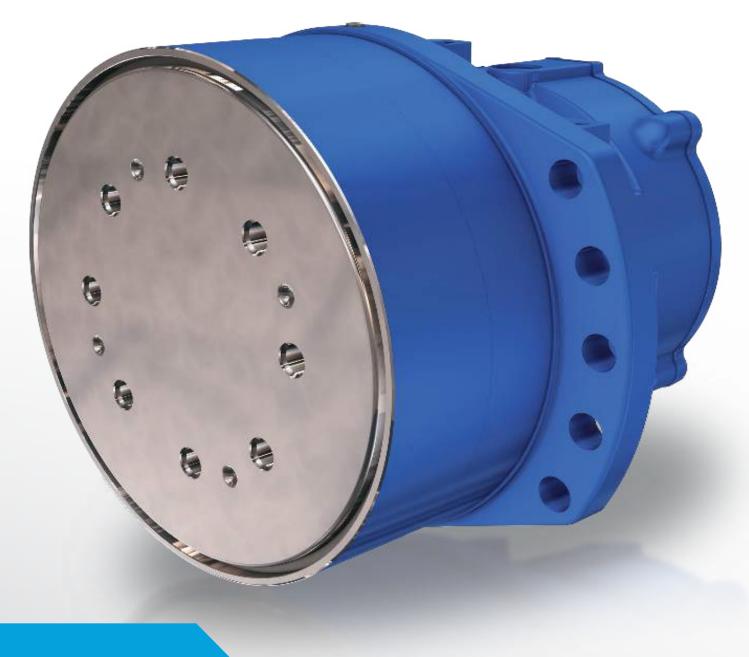
MHP20/27 with C27 brake

BOOSTED BRAKE

More security for self-propelled machines

Improve the braking performance of self-propelled machines by using the entirely hydrostatic braking capacity of hydraulic motors. The technology - Boosted Brake - meets the braking requirements for machines running at 40 kph [24.8 mph].


On a self-propelled machine running at 40kph [24.8 mph] the hydrostatic brake must be combined with a friction brake to meet European regulations of deceleration. Poclain Hydraulics has developed a new technology - Boosted Brake - to increase the hydrostatic braking capacity of self-propelled machines.


Motor sizes

Flanged valves

Designed with a flat porting surface, the MHP 20 and MHP 27 motors can receive valve blocks, which can be flanged on the cover in order to enhance the control (electrical command for displacement shifting) and simplify the piping on the machine.

Ultra-short motors Large diameter 4 contact roller bearing Single or dual displacement With or without brake Compactor drive applications

COMPACTNESS THE SHORTEST AXIAL DIMENSION

MK/MKD04 = MK05 = MK09 MK/MKE12 = MK/MKE18

From 272 to 2 812 cm³/rev. [16.6 to 171.5 cu.in/rev.]

Up to 15 030 N.m [11,085 lbf.ft]

Up to 450 bar [6,530 PSI]

Up to 160 rpm

Up to 70 kW [94 HP]

Performance

-			First displace	ement*		Se	cond displac	ement**	
	Max. Pressure bar [PSI]	Displacement range cm³/rev [cu.in/rev]	Max. Torque*** N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]	Displacement range cm³/rev [cu.in/rev]	Max. Torque*** N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]
MK04	400 [5,802]	272 - 408 [16.6] - [24.9]	2 600 [1,918]	120	18 [24]	-	-	-	-
MKD04	400 [5,802]	456 - 545 [27.8] - [33.2]	3 470 [2,559]	90	18 [24]	:	-	-	- -
MK05	400 [5,802]	272 - 670 [16.6] - [40.9]	4 265 [3,146]	130	22,5 [30]	:	-	-	- -
MK09	400 [5,802]	667 - 1 000 [40.7] - [61.0]	6 370 [4,698]	100	30 [40]	:	-	-	- -
MK12	450 [6,527]	627 - 934 [38.2] - [57.0]	6 690 [4,934]	100	41 [55]	313 - 467 [19.1] - [28.5]	3 345 [2,467]	100	27 [36]
MKE12	450 [6,527]	1 043 - 1 356 [63.6] - [82.7]	9 710 [7,162]	100	41 [55]	521 - 678 [31.8] - [41.4]	4 855 [3,581]	100	27 [36]
MK18	450 [6,527]	1 395 - 2 099 [85.1] - [128]	15 030 [11,085]	155	70 [94]	697 - 1 049 [42.5] - [64.0]	7 510 [5,539]	160	47 [63]
MKE18	400 [5,802]	2 340 - 2 812 [142.7] - [171.5]	17 900 [13,202]	90	70 [94]	1 170 - 1 406 [71.4] - [85.8]	8 950 [6,601]	110	47 [63]

*Available for single or dual displacement motors **Only available for dual displacement motors ***Max. theoretical torque (N.m) : 1/(20 π) x max. displacement (cm³/rev.) x max. pressure (bar)

Chassis fixation types

On the bearing support Circular

On the valving cover Two lugs

From rear	
of motor	

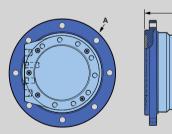
MK04	•		
MKD04	•		
MK05			•
MK09			•
MK12		•	
MKE12		•	
MK18		•	
MKE18		•	

1C : One displacement

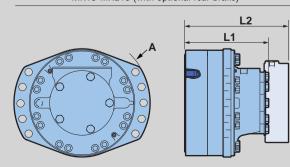
2C : Dual displacement

			MKOA	MKD04	MK05	MK05	MIXOO	MK12	MK18
			MK04	MKD04	axial	radial	MK09	MKE12	MKE18
L1 —	10	mm [in]	172,7 [6.80]	176,2 [6,93]	165 [6,5]	146,5 [5.77]	247,6 [9.75]	249 [9.8]	264 [10.39]
	2C	mm [in]	- [-]	- [-]	- [-]	- [-]	- [-]	283 [11.14]	264 [10.39]
L2 max.* —	10	mm [in]	- [-]	- [-]	- [-]	- [-]	- [-]	- [-]	363,8 [14.32]
	2C	mm [in]	- [-]	- [-]	- [-]	203,5 [8.01]	- [-]	- [-]	363,8 [14.32]
A dia. nax.		mm [in]	256 [10.08]	256 [10.08]	302 [11.89]	240 [9.45]	335 [13.81]	355 [13.19]	425 [16.73]
Weight max.**		kg [lb]	31 [68]	32 [70]	35 [77]	40 [88]	72 [158]	82 [180]	132,5 [292]

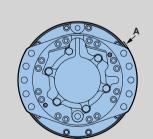
* Wheel motor with the longest multidiscs brake. ** Full displacement wheel motor with multidiscs brake.

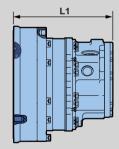

MK04 / MKD04 MK05 axial ports MK05 radial (with optional rear brake) L2 L1 L1 0 0 ဴၜ 0 C

MK09


L1

0 0


0



MK18-MKE18 (with optional rear brake)

MK12-MKE12

MK

Brakes

IOTORS


Multidisc parking brake mounted at the rear of the motor

- F brake: brake with standard rear plate
- T brake: brake with reinforced rear plate
- Parking brake release pressure: 12 to 30 bar [174 to 435 PSI]

Max. parking braking torque

	N.m [lb.ft]	MK05	MK18 MKE18
F04/T04	3 600 [2,655]	•	
F07/T07	7000 [5,160]	٠	
F12/T12	11 840 [8,730]		٠
F19/T19	18 600 [13,720]		•

MK05 with brake mounted at the rear of the motor

Multidisc integrated parking brake

- Parking brake release pressure: 12 to 30 bar [174 to 435 PSI]

Max.	parking	braking	torque

	N.m [lb.ft]	MK09
Integrated brake	6050 [4,460]	•

Multidisc parking brake mounted in the bearing support

- Parking brake release pressure: 12 to 30 bar [174 to 435 PSI]

Max.parking braking torque

	N.m [lb.ft]	MK12 MKE12	
Brake in bearing support	9 000 [6,640]	•	

Claw brake

- Parking brake release pressure: 17 to 30 bar [246 to 435 PSI]

Max. parking braking torque

	N.m [lb.ft]	MK04	MKD04	MK05*
Claw brake	3 170 [2,338]	•	٠	
GIAW DIAKE	3 500 [2,580]			•

* With axial ports

MK09 with integrated brake and hollow shaft

MK04 with Claw brake

MOTORS

Optional features

Temperature control

•						
	MK04	MKD04	MK05	MK09	MK12	MK18
Exchange valve						•
High efficiency (zero clearance pistons/ring)		•		•	٠	
Additional case flushing port	•			•	•	٠
Speed						
	MK04	MKD04	MK05	MK09	MK12	MK18
High speed / Low pressure drop (Butterfly valving)		٠				
Speed sensor	•	٠	•	•	•	٠
Reinforcement	МКО4	MKD04	MK05	MK09	MK12	MK18
Extra long life (Diamond™)		•		•	•	•
PEEK bushing (against high temperature)	٠	•	٠	٠	٠	٠
Reinforced back plate					٠	٠
Brake lock plate (for high speed motor fixation)				•		
Reinforced front flange	•	•	•	•*	•	
* Standard						
Hollow shaft						
	MK04	MKD04	MK05	MK09	MK12	MK18

* Standard

HIGH SPEED AXIAL PISTONS MOTORS FOR VIBRATION

Easy to integrate and versatile

Thanks to their architecture, many options are directly integrated in the cover:

- Relief valves to reduce the risk of pressure peaks
- Integrated anticavitation valves that ensure a longer lifetime of the machines
- Integrated exchange valve option to regulate the temperature of a closed loop circuit
- The speed sensor provides maximum precision in the control of the vibration speed
- Same or opposite side ports

More information > Page 65

•

•

High Torque and Radial Pistons

Integrated pivot Different steering angles Single or dual displacement With or without brake

STEERABLE WHEEL MOTORS EASY MOTORIZATION OF STEERING WHEELS

MG/MGE02 - MG/MGE05 MG/MGE11 - MG21

From 172 to 2 519 cm³/rev. [10.5 to 153 cu.in/rev.]

Up to 16 030 N.m [11,823 lbf.ft]

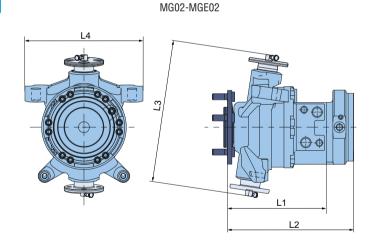
Up to 450 bar [6,530 PSI]


Up to 510 rpm

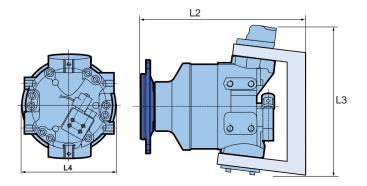
Up to 80 kW [107 HP]

Performance

-		First displacement*				Second displacement**			
	Max. Pressure bar [PSI]	Displacement range cm³/rev [cu.in/rev]	Max. Torque*** N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]	Displacement range cm³/rev [cu.in/rev]	Max. Torque*** N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]
MG02	450 [6,527]	172 - 255 [10.5] - [15.6]	1 800 [1,227]	390	18 [24]	86 - 128 [5.2] - [7.8]	916 [676]	510	12 [16]
MGE02	400 [5,802]	332 - 398 [20.2] - [24.3]	2 500 [1,843]	200	22 [29.5]	166 - 199 [10.1] - [12.1]	1 260 [930]	275	16,5 [22]
MG05	450 [6,527]	260 - 560 [15.9] - [34.2]	4 010 [2,957]	420	29 [39]	130 - 280 [7.9] - [17.1]	1 862 [1,373]	420	19 [35]
MGE05	400 [5,802]	503 - 749 [30.7] - [45.7]	4 768 [3,517]	225	29 [39]	251 - 374 [15.3] - [22.8]	3 202 [2,361]	275	19 [35]
MG11	450 [6,527]	730 - 1 259 [44.5] - [76.8]	9 000 [6,638]	200	50 [67]	365 - 630 [22.3] - [38.4]	4 500 [3,319]	200	33 [44]
MGE11	400 [5,802]	1 263 - 1 687 [77.0] - [102.9]	10 700 [7,891]	170	50 [67]	632 - 844 [38.5] - [51.4]	5 370 [3,960]	190	33 [44]
MG21	400 [5,802]	1 674 - 2 519 [102.1] - [153.6]	16 030 [11,823]	138	80 [107]	837 - 1 260 [51.0] - [76.8]	8 020 [5,915]	138	53 [71]


*Available for single or dual displacement motors **Only available for dual displacement motors ***Max. theoretical torque (N.m) : $1/(20 \pi) x$ max. displacement (cm³/rev.) x max. pressure (bar)

Dimensions


- 1C : One displacement
- 2C : Dual displacement

			MG02 MGE02	MG05 MGE05	MG11 MGE11	MG21 MGE21
14	10	mm [in]	215,1 [6,47]	- -	- -	-
L1 —	20	mm [in]	251,4 [9.90]	-	-	- -
L2 max.*	10	mm [in]	262,9 [10.35]	426 [16.77]	513 [20.20]	554 [21.81]
	20	mm [in]	290,4 [11.43]	426 [16.77]	513 [20.20]	554 [21.81]
L3		mm [in]	326,5 [12.85]	442 [17.40]	505 [19.88]	505 [19.88]
L4		mm [in]	270 [10.63]	224 [8.81]	314 [12.36]	314 [12.36]
Weight max.**		kg [lb]	47,8 [105.2]	97 [213]	210 [463]	230 [507]

* Wheel motor with the longest multidiscs brake. ** Two displacements wheel motor with multidiscs brake.

MG05-MGE05 / MG11-MGE11 / MG21

PLUG AND PLAY MOTOR

Easy integration onto the chassis

The MG motor optimizes the design of motorized steering wheels. The integration of the pivot function, steering attachments and bevel stops on the casing of the MG motor, simplify the assembly of motorized steering wheels on a chassis.

Integrated steering bracket attachment Available on MG05/E05, MG11/E11 and MG21

Hydraulic pivot for easy piping

- No movement of high pressure pipes
- Avoid pipe damages
- Optimized length of pipes
- On MG05/E05, MG11/E11 and MG21

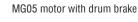
C-Frame Direct mounting on machine axle

Brakes

Multidisc brake

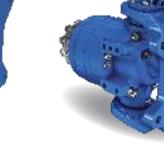
Max. parking braking torque

N.m [lb.ft]	MG02 MGE02	MG05 MGE05
2 500 [1,840]	•	
4 500 [3,320]		٠


Drum brake

Max. service braking torque

mm	N.m [lb.ft]	MG05 MGE05
250 x 60	5 000 [3,688]	٠

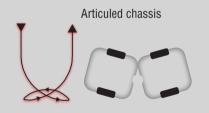

MG02 motor with multidisc brake at the rear

MG05 motor with multidisc brake in the bearing support

MOTORS

Steering angle

MOTORS


	MG05 MGE05	MG11 MGE11	MG21	MG02 MGE02
Angle a	90°	80°	80°	The steering angles a and b can be differents within the limits of the - customer's chassis conception and the hydraulics connections.
Angle b	45°	40°	40°	The steering angle is adjusted with the steering stop screws.

a

ENHANCED STEERING ANGLE

Compared to a vehicle equipped with an articulated chassis, a vehicle fitted with motorized steering wheels offers a better steering angle and can consequently perform u-turns in a smaller radius using fewer movements.

3 steering modes available:

On the front wheel for road transfers

Four wheel steer to tighten the turning radius

Chassis with motorized steering wheels

Crab steering for sideways machine movement

MOTORS

Optional features

Temperature control

	MG02-E02	MG05-E05	MG11-E11	MG21
High efficiency (zero clearance pistons/ring)	•	٠		
Additional case flushing port	•			

Speed

	MG02-E02	MG05-E05	MG11-E11	MG21
High speed / Low pressure drop (Butterfly valving)	•	•		
Speed sensor	٠	•	٠	•

Reinforcement

	MG02-E02	MG05-E05	MG11-E11	MG21
Extra long life (Diamond™)	٠	٠	٠	•

High pressure connection

	MG02-E02	MG05-E05	MG11-E11	MG21
SAE Flange	•			
Metric	•	٠	٠	٠
UNF	•	٠	•	٠

Compact motors Large choice of pinions Integrated shockless or anti-rebound valves Integrated brake

SWING DRIVE Smooth and precise swing drive

MZ/MZE02 • MZE03 • MZ/MZE05

From 213 to 750 cm³/rev. [13.0 to 45.7 cu.in/rev.]

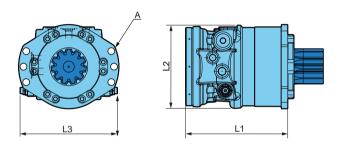
Up to 3 100 N.m [2,286 lbf.ft]

Up to 260 bar [3,771 PSI]

Up to 470 rpm

Up to 29 kW [39 HP]

Performance


	Max. Pressure bar [PSI]	Displacement range cm³/rev [cu.in/rev]	Max. Torque* N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]
MZ02	260 [3,771]	213 - 255 [13.0] - [15.6]	1 055 [778]	470	18 [24]
MZE02	260 [3,771]	332 - 398 [20.2] - [24.3]	1 650 [1,217]	265	22 [30]
MZE03	260 [3,771]	450 - 500 [27.5] - [30.5]	2 070 [1,526]	155	22 [30]
MZ05	260 [3,771]	468 - 560 [28.6] - [34.2]	2 320 [1,711]	240	29 [39]
MZE05	260 [3,771]	625 - 750 [38.1] - [45.7]	3 100 [2,286]	190	29 [39]

*Max. theoretical torque (N.m) : 1/(20 $\pi)$ x max. displacement (cm³/rev.) x max. pressure (bar)

Dimensions

		MZ02-MZE02	MZE03	MZ05-MZE05
L1	mm	239	219	266,3
	[in]	[9.41]	[8.62]	[10.48]
L2	mm	195	195	228
	[in]	[7.68]	[7.68]	[8.98]
L3	mm	228	222	294
	[in]	[8.97]	[8.74]	[11.57]
A dia.	mm	340	302	300
max.	[in]	[13.39]	[11.89]	[11.81]
Weight	kg	42	46	65
max.	[lb]	[93]	[101]	[143]

SMOOTH AND PRECISION

Built-in pressure relief and check valves

The built-in valves ensure smoother acceleration or deceleration of the turret. Coupled with the radial piston motor technology, these valves guarantee extremely accurate positioning of the mini-excavator boom.

The technical characteristics of the MZ motor - no gear box and low internal leakages - reduce turret drifting when operating on slopes.

Pressure relief valve with or without dynamic shockless behavior

Limits the pressure in the high pressure lines of the hydraulic motor. Allows the absorption of the pressure peaks.

Check valve

Allows to compensate for leakages to prevent cavitation.

MOTORS

Pinion types

		MZ02-MZE02				MZE03		MZ05-MZE05	
Norm		NF ISO 53	NF ISO 53	NF ISO 53	NF ISO 53	NF ISO 53	NF ISO 53	NF ISO 53	NF ISO 53
Module		6	5	5	4,5	6	7	8	8
Number of teeth		14	17	14	11	14	12	12	11
Pitch diameter	mm [in]	84 [3.31]	85 [3.35]	70 [2.76]	49,5 [1.95]	84 [3.31]	84 [3.31]	96 [3.78]	88 [3.46]
Pressure angle		20°	20°	20°	20°	20°	20°	20°	20°

Brakes

Multidisc brake mounted at the rear of the motor

Max. braking torque

N.m [lb.ft]	MZ02-MZE02	MZE03	MZ05-MZE05
1 100 [810]	٠		
1 830 [1,350]	٠		
2 200 [1,620]		٠	
4 910 [3,621]			•

Integrated multidisc brake

Automatic de-braking valve

De-braking valve controls time for braking / brake release of the hydraulic motor's static brake.

MZ02-MZE02	MZE03	MZ05-MZE05
	٠	•
•	•	
	MZ02-MZE02	MZ02-MZE02 MZE03

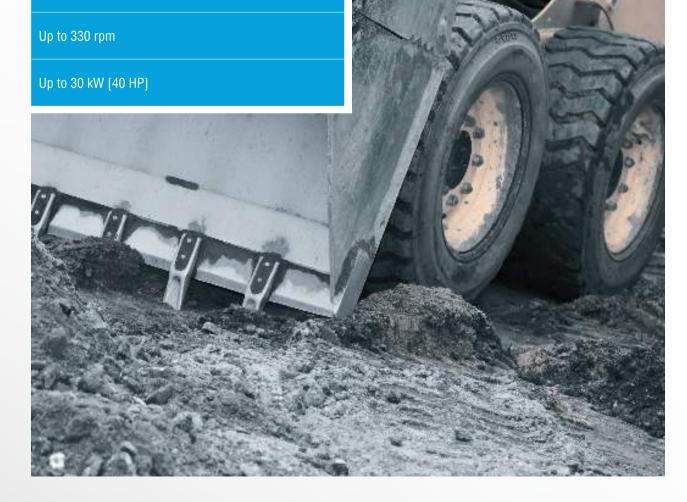
FOR EXCAVATORS UP TO 24 TONS

MS Motors with pinion shaft

Thanks to its modular design, high performance and reliability, the MS motor is also a perfect solution for swing-drive of small / medium excavators.

	Displacement range cm³/rev [cu.in/rev]	Max. Torque* N.m [lbf.ft]	Excavator size	MS Motors with shockless or anti-rebound valve
MS08	467 - 934 [28.5] - [57.0]	3 850 [2,840]	Up to	*E- MARK
MSE08	1 043 - 1 248 [63.6] - [76.2]	5 150 [3,796]	13 tons	
MS11	730 - 1 259 [44.5] - [76.8]	5 200 [3,835]	Up to	
MSE11	1 263 - 1 687 [77.1] - [102.9]	6 950 [5,126]	18 tons	The States
MS18	1 091 - 1 911 [66.6] - [116.6]	7 900 [5,827]	Up to	
MSE18	2 340 - 2 812 [142.8] - [171.6]	11 600 [8,556]	24 tons	More information > Page 14
*Theoretica	Il torque at 260 bar [3771 PSI]			

Compact motors Smooth speed shifting Integrated exchange valve Single or dual displacement Integrated brake Well adapted to skid-steer applications


SKID-STEER MOTOR COMPACT SIZE FOR A CUSTOM FIT

ML/MLE06

From 420 to 842 cm³/rev. [25.6 to 51.4 cu.in/rev.]

Up to 4 800 N.m [3,540 lbf.ft]

Up to 380 bar [5,526 PSI]

Performance

			First displace	ment*		Second displacement**			
	Max. Pressure bar [PSI]	Displacement range cm³/rev [cu.in/rev]	Max. Torque*** N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]	Displacement range cm³/rev [cu.in/rev]	Max. Torque*** N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]
ML06	381 [5,526]	630 [38.4]	3 820 [2,817]	226	30 [40]	420 [25.6]	2 547 [1,875]	330	20 [27]
MLE06	381 [5,526]	702 - 842 [42.8] - [51.4]	5 106 [3,766]	203	30 [40]	421 - 561 [25.7] - [34.2]	3 402 [2,509]	322	20 [27]

MOTORS

*Available for single or dual displacement motors **Only available for dual displacement motors

***Max. theoretical torque (N.m) : $1/(20 \pi)$ x max. displacement (cm³/rev.) x max. pressure (bar)

Dimensions

1C : One displacement

2C : Dual displacement

			ML06 MLE06		
L -	10	mm [in]	330 [13.00]		
L	20	mm [in]	340 [13.40]		
A dia. max.		mm [in]	236 [9.29]		
Weight max.*		kg [lb]	49 [108]		

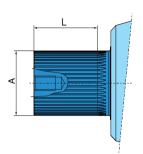
*Two displacements motor

The ML06 is designed for a skid-steer's small engine compartment.

While other motors require offset layout, these compact powerhouses can be mounted back-to back, allowing for symmetric vehicle design, increased parts commonality, and easier access or vehicle maintenance.

MORE COMFORT AND PRODUCTIVITY

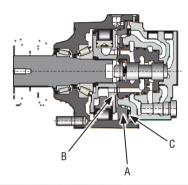
Softshift design and integrated exchange valve


The ML06 incorporates the patented SoftShift[™] two-speed design that softens the shifting of the transmission, providing smoother operation and greater operator comfort.

Additionally, an integrated exchange valve sends hot oil to the cooler while providing trouble-free cold weather performance excellent for use in snow removal applications. The unique features of the ML06 motor provide greater overall productivity to skid-steer loader operation.

Splined shaft types

Number of teeth		53	49
Standard		ANSI B92.1-1996	ANSI B92.1-1996
Accuracy class		5	5
Module		20/40	20/40
Pressure angle		30°	30°
L	mm [in]	67,8 [2.67]	67,8 [2.67]
A dia. max.	mm [in]	68,58 [2.70]	63,5 [2.50]



MOTORS

Integrated claw brake

Max. parking braking torque

N.m [lb.ft] 4500 [3319]

This parking brake consists of two parts, one non rotating (A)acting as brake piston, one rotating (B) part of the cylinder block, each equiped with a row of teeth. In the absence of debraking pressure, the (C) spring maintains part A in contact with the cylinder-block, thus immobilizing it.

MS MOTORS

For small and big skid-steers


Poclain Hydraulics motors are designed to power skid-loaders of 600 kg [1,323 lb] to 1 800 kg [4,000 lb] SAE rated lift capacity. The ML06 is best applied to loaders ranging betwen 800 kg [1,764 lb] and 1 250 kg [2,756 lb] capacity.

	Displacement range cm³/rev [cu.in/rev]	Max. Torque N.m [lbf.ft]	Skid-loader SAE rated lift capacity kg [lb]
M\$02	172 to 255 [10.5 to 15.6]	1 800 [1,227]	600 to 800
MSE02	332 to 398 [20.2 to 24.3]	2 500 [1,843]	[1,323 to 1,764]
M\$05	260 to 560 [15.9 to 34.2]	4 000 [2,950]	800 to 1 650
MSE05	503 to 750 [30.7 to 45.7]	4 770 [3,518]	[1,764 to 3,600]
M\$11	730 to 1 259 [44.5 to 76.8]	9 000 [6,638]	1 250 to 1 800
MSE11	1 263 to 1 687 [77.0 to 102.9]	10 700 [7,891]	[2,756 to 4,000]

More information > Page 14

High Output Torque High Power Density Compactness Steady motion at very low speed Flanged Valves available

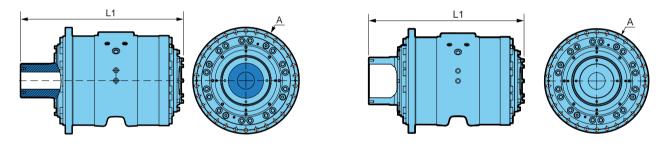
HIGH DISPLACEMENT PERFORMANCE AND LOW CONSUMPTION

MI

Performance

	Max. Pressure bar [PSI]	Displacement range cm³/rev [cu.in/rev]	Max. Torque* N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]
M188	450 [6,527]	7 000 - 10 400 [426.9 - 634.3]	74 484 [54,936]	140	265 [355]
MI250	450 [6,527]	17 500 - 30 000 [1,037 - 1,831]	167 112 [123,255]	100	500 [671]

*Max. theoretical torque (N.m) : 1/(20 π) x max. displacement (cm³/rev.) x max. pressure (bar)


Dimensions

		MI88 (splined)	MI250 (splined)	MI250 (shrink disc)
L1	mm	631,5	950,8	925,3
	[in]	[24.87]	[37.43]	[36.43]
A dia.	mm	500	631	631
max.	[in]	[19.68]	[24.84]	[24.84]
Weight	kg	352	920	940
max.	[lb]	[776]	[2,028]	[2,070]

Male splined shaft motor

Shrink disc motor

PHAST PROGRAM

Fast delivery

Poclain Hydraulics is committed to supplying a number of standard motors **within 15 business days**, excluding transport. This delivery time applies to any order of one to four identical hydraulic motors of a given size.

Making their selection from a predetermined list of motors, machine manufacturers can choose from wheel motors or shaft motors, in a fixed displacement or double displacement version, with or without a brake. All motors are equipped with a pre-disposition for speed sensor. Pre-configured motors are equipped to guarantee a maximum level of performance.

Motor types

MS02-E02	MS05-E05	MS08-E08	MS11-E11	MS18-E18	MS35	MS50	MS83	MS125	MI250
•	٠	٠	٠	٠	•	•	•	•	•
\sim							- 201	ATRA D	12.13
	lore inform	nation > Pa	ge 162						
_									
U Vi	isit our ded	icated web	page						

MOTORS

Shaft types

		Female splines	Male splines		Shrink disc	Hollow shaft	
		MI250	MI88	MI250	MI250	MI250	
Norm		DIN 5480	DIN 5480	DIN 5480	-	-	
Module		5	5	5	-	-	
Number of teeth		38	31	38	-	-	
Nominal diameter	mm [in]	200 [7.87]	165 [6.50]	190 [7.48]	-	100 [3.94]	
External diameter	mm [in]	-	169 [6.65]	200 [7.87]	280 [11.00]	- -	
Internal diameter	mm [in]	-	-	-	200 [7.87]	- -	

Female splined shaft with circular fixation

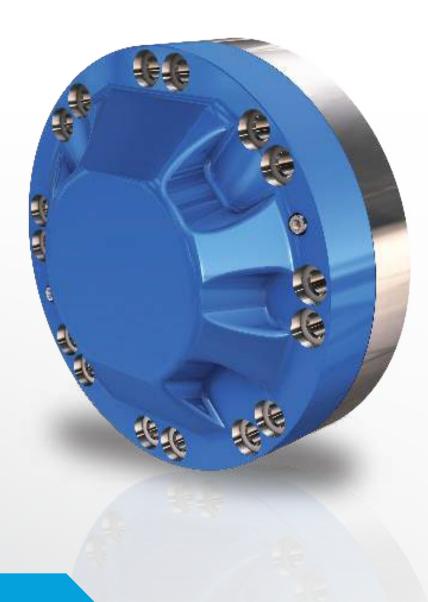
Shaft for shrink disc with circular fixation

Female splined shaft with lugs fixation

Male splined shaft with circular fixation Hollow shaft

Flanged valve for MI250

This valve, which is directly flanged on the MI250, will offer enhanced protection of the motor against possible cavitation during operation, by ensuring sufficient back pressure on the motor (additional flow provided by the accumulator). This valve is available with 2 positions for the accumulator (0° or 90°).


	Max. operating pressure	Precharge pressure	Volume	Hydraulic schematics
-	bar [PSI]	bar [PSI]	L [G]	
Valve	450 [6,526]	-	170 [45]	
Accumulator	-	12 [174]	2 [0.53]	

Torque arms and shrink discs

To ease the integration of our motors into your machines, Poclain Hydraulics can supply motors with adapted torque arms and shrink discs.

MI250 motor with shrink discs

Compatible with the original braking system (drum or disk) Does not affect kinematic steering or suspension No need to re-certify the axle Watertight design Hydraulic maintenance in sync with axle maintenance Compatible with different types of tires

HYDROBASE FOR WHEEL HUBS TO PROVIDE ADDITIONAL TRACTION OR RETAINING TORQUE

MF/MFE08

From 627 to 1 248 cm³/rev. [38.2 to 76.1 cu.in/rev.]

Up to 7 945 N.m [5,860 lbf.ft]

Up to 450 bar [6,530 PSI]

Up to 150 rpm (1000 rpm in freewheeling)

Up to 41 kW [55 HP]

MF

Max.

Pressure

bar [PSI]

450

[6526]

400 [5800]

Performance

MF08

MFE08

*Max. theoretical torque (N.m) : 1/(20 π) x max. displacement (cm³/rev.) x max. pressure (bar)

Displacement

range

cm³/rev [cu.in/rev]

627 - 934 [38.2] - [57.0]

838 - 1 248 [51.1] - [76.1] Max.

Torque*

N.m [lbf.ft]

6 689

[4,934]

7 945 [5,860] Max.

Speed

RPM

150

112

Max. Speed

freewheeling

RPM

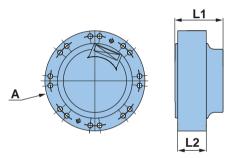
1 000

1 000

Max.

Power

kW [HP]


41

[55]

41 [55]

Dimensions

		MF08-MFE08
L1	mm [in]	123,2 [4.85]
L2	mm [in]	73 [2,87]
A dia.	mm [in]	257 [10.12]
Weight	kg [lb]	29 [1.14]

Optional features

Temperature control

	MF08-E08
High efficiency (zero clearance pistons/ring)	•
Mechanical freewheeling	•

Reinforcement

	MF08-E08
Extra long life (Diamond™)	•

MF

ALL-WHEEL DRIVE FOR TRUCK

Simple design that is easy to install

Customers have no other choice, but to opt for mechanical allwheel drive to improve the mobility of their trucks. This generates constraints and impacts their total cost of ownership, which results in:

- increased fuel consumption;

- reduction in payload capacity;
- lower levels of comfort for the driver.


Addidrive enables customers to seize new market opportunities. OEM's are provided with a proven technology which meets their strategic needs.

A genuine alternative to mechanical all-wheel drive, Addidrive ensures optimum mobility for trucks that need to work in harsh weather conditions and irregular terrain - such as fields, forests and construction sites.

Single or dual displacement Integrated clutch Watertight design Compact

CREEP DRIVE TO WORK AT LOW AND CONSTANT SPEED

CDM222 - CDM20

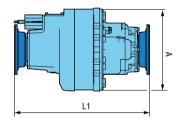
From 667 to 2 424 cm³/rev. [40.7 to 148.1 cu.in/rev.]

Up to 15 580 N.m [11,491 lbf.ft]

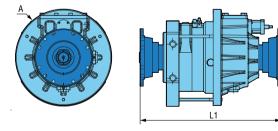
Up to 450 bar [6,527 PSI]

Up to 363 rpm (4 000 rpm in freewheeling)

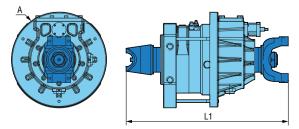
Performance


	Max. Pressure bar [PSI]	Displacement range First displacement cm³/rev [cu.in/rev]	Displacement range Second displacement cm³/rev [cu.in/rev]	Max. Torque output N.m [lbf.ft]	Max. speed CreepDrive mode RPM	Max. speed Freewheeling mode RPM	Max. Power kW [HP]
CDM222	400 [5,802]	667 - 1 000 [40.7] - [61.0]	-	6 278 [4,630]	200	3 200	40 [53.7]
CDM20	450 [6,527]	1 416 - 2 427 [86.4] - [148.1]	708 - 1 214 [43.2] - [74.1]	15 580 [11,491]	363	3 700	175 [234.7]

Dimensions


Difficitor	0113			
		CDN	CDM20	
		Companion flange	End yoke half round	Companion flange
L1	mm [in]	504,5 [19.86]	504,5 [19.86]	550 [21.65]
A dia. max.	mm [in]	340,4 [13.40]	340,4 [13.40]	329 [13.00]
B dia. max.	mm [in]	-	-	425 [16.73]
Weight max.	kg [lb]	120 [265]	120 [265]	160 [353]

CDM20 with companion flange



CDM222 with companion flange

CDM222 with end yoke half round

MOTORS

Shaft types

			Compani	on flange			End yoke	half round
	SAE 1650	SAE 1710	SAE 1810	XS 150	XS 180	XS 200	Split eye	Solid eye
CDM222	•	٠	٠	٠	٠		•	٠
CDM20		•	•	•	•	•		

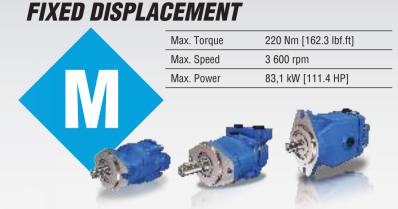
CREEPDRIVE SYSTEM

Low and constant working speed

CreepDrive is a hybrid mechanical-hydraulic transmission for vehicles that travel at normal speed and work at low speed. The system allows vehicles to work at very low constant speed regardless of the engine speed, allowing auxiliary systems to take the power they need to perform work effectively. When the system is disengaged, the vehicle is able to drive at normal on-road speed with no additional losses.

- · Can be integrated in all trucks from 12t up to 44t for multiple applications
- Compatible with diesel and gasoline
- · Compatible with automatic and manual gearbox
- Fitted on trucks with or without CAN Bus

Benefits


• Ability to work at constant speed from 0.4 kph to 12 kph [0.25 mph to 7.0 mph] in both forward and reverse

- Independent of engine speed
- Compatible with low engine rpm enabling low noise level
- Easy to install and mount on the chassis
- Does not affect the original truck kinematics
- No impact on chassis stiffness, the original chassis flexibility is guaranteed
- · Reduces wear on the brake, clutch and transmission
- No need for specific maintenance: CreepDrive maintenance is done simultaneously with mechanical transmission's maintenances

More information > Page 154

Hydraulic Motors High speed & axial pistons

DUAL DISPLACEMENT

p.66

р.66

MOTORS

Fixed or dual displacement Hydraulic or electrical control For open and closed loop Compact

MOTORS

HIGH SPEED MOTORS FOR OPEN AND CLOSED LOOPS

M0 - M1 - M2 - M3 MV2= MV3

From 7.0 to 65 cm³/rev. [0.43 to 3.97 cu.in/rev.]

Up to 220 N.m [162.3 lbf.ft]

Up to 360 bar [5,221 PSI]

Up to 4 200 rpm

Up to 83,1 kW [111.4 HP]

Performance

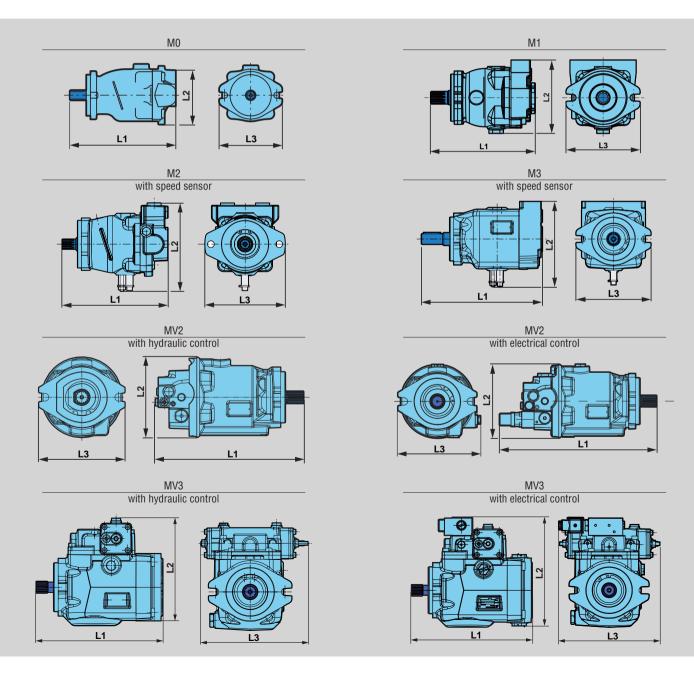
	Displa	cement	Displacement range	Max. Speed	Max. Power*	Max. Torque**	Max. Pressure
	Fixed	Dual	cm³/rev [cu.in/rev]	RPM	kW [HP]	N.m [lbf.ft]	bar [PSI]
MO	•	-	7 - 18 [0.43] - [1.10]	3 600	7,8 - 19,7 [10.5] - [26.4]	65 [47.9]	300 [4,351]
M1	•	-	9 - 21 [0.55] - [1.28]	3 600	10,0 - 22,4 [13.4] - [30.0]	90 [66.4]	320 [4,641]
M2	•	-	21 - 50 [1.28] - [2.99]	3 600	23,0 - 63,1 [30.8] - [84.6]	220 [162.3]	320 [4,641]
M3	•	-	60 - 65 [3.66] - [3.94]	3 600	76,7 - 83,1 [102.8] - [111.4]	220 [162.3]	350 [5,076]
MV2	-	•	35 - 53 [2.14] - [3.23]	4 200	41,2 - 62,3 [55.2] - [83.5]	220 [162.3]	360 [5,221]
MV3	-	•	55 - 65 [3.36] - [3.97]	4 200	64,7 - 76,4 [86.8] - [102.4]	220 [162.3]	360 [5,221]

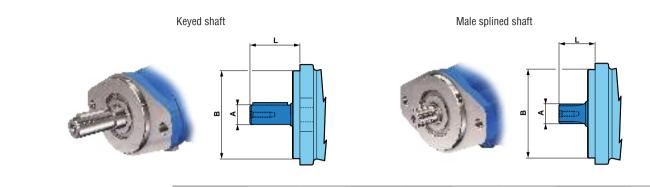
*Power given at rated pressure and max. speed ** Lowest max. torque for splined shaft. Please contact your Poclain Hydraulics application engineer for more information for different versions / options available.

EASY TO INTEGRATE AND VERSATILE

New cover of the M motors

Thanks to its architecture, many options are directly integrated in the cover:


- Relief valves can be integrated as close as possible to the motor, which is the most efficient way to reduce the risk of pressure peaks.
- Integrated anticavitation valves make machines more reliable. Customers will appreciate this option, which ensures a longer lifetime for their machines, especially for applications in open loop when the motor undergoes working sessions with high inertia and can be driven by the load.
- Thanks to the flushing valve option, the motor is now able to regulate the temperature of a closed loop circuit without addition of another valve block.
- The flange ports allow direct connection on the motor with an external valve bloc.


Dimensions

		MO M1 M2 M3 MV2		V2	MV3				
Displacement shif activation		-	-	-	-	Hydraulic	Electrical	Hydraulic	Electrical
L1	mm	162,7	183,4	260,5	280,5	295,5	341,5	264	260
max.*	[in]	[6.41]	[7.22]	[10.25]	[11.04]	[11.63]	[13.44]	[10.39]	[10.23]
L2	mm	91	128,5	164	163,3	160	160	223,5	236,5
	[in]	[3.58]	[5.06]	[6.46]	[6.43]	[6.30]	[6.30]	[8.80]	[9.31]
L3	mm	97	130	172	174	172	172	218	221
	[in]	[3.82]	[5.12]	[6.77]	[6.85]	[6.77]	[6.77]	[8.58]	[8.70]
Weight	kg	3,5	8,0	12	15	19	19	30	30
	[lb]	[7.72]	[17.64]	[26.46]	[33.07]	[42]	[42]	[66]	[66]

* Motor with the longest shaft.

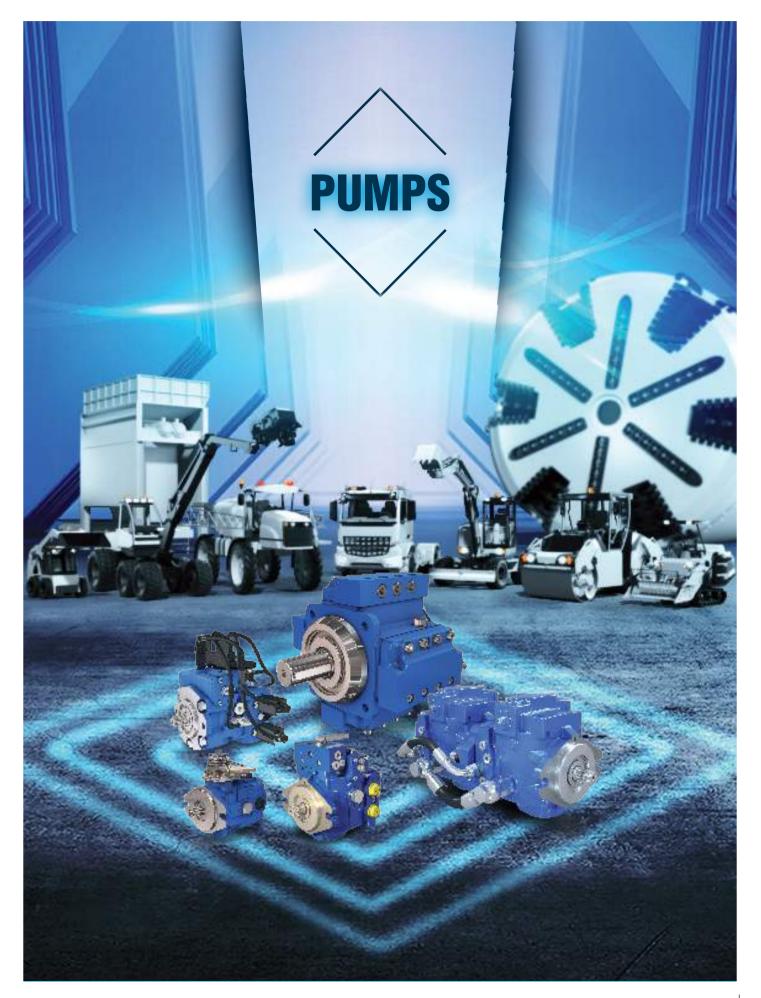
Mounting flanges and shafts

			MO	N	11	N	12	N	13	MV2	MV3
	Dia. A	mm [in]	15,875 [0.625]		9 75]	22,22 [0.87]	25 [0.98]		5 98]		-
Keyed shaft	Dia. B	mm [in]	63 [2.48]		,55 25]	101,6 [4.00]	101,6 [4.00]		1,6 00]	-	-
	L	mm [in]	25,3 [1.00]		4,6 36]	57,8 [2.28]	75,0 [2.95]		5,0 95]	-	-
	Number of teeth		9	11	13	13	15	13	15	15	15
	Dia. A	mm [in]	15,8 [0.62]	19 [0.75]	22,2 [0.87]	22,2 [0.87]	25 [0.98]	22,2 [0.87]	25 [0.98]	25 [0.98]	25 [0.98]
	Dia. B	mm [in]	63 [2.48]	82,55 [3.25]	82,55 [3.25]	101,6 [4.00]	101,6 [4.00]	101,6 [4.00]	101,6 [4.00]	101,6 [4.00]	101,6 [4.00]
Splined shaft	L	mm [in]	25,3 [1.00]	35,1 [1.38]	41,5 [1.63]	41,5 [1.63]	44,0 [1.73]	41,0 [1.61]	47,5 [1.87]	46 [1.81]	46 [1.81]
	Standard		ANSI B92.1a-1976	ANSI B92	2.1a-1976	ANSI B92	2.1a-1976	ANSI B92	2.1a-1976	ANSI B92.1a-1976	ANSI B92.1a-1976
	Pitch		16/32" D.P.	16/32	." D.P.	16/32	." D.P.	16/32	." D.P.	16/32" D.P.	16/32" D.P.
	Pressure angle		30°	30°	30°	30°	30°	30°	30°	30°	30°
	Accuracy class		5	5	5	5	5	5	5	5	5

Controls

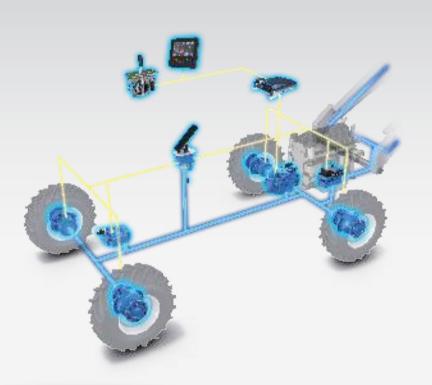
	Two positions control			
	Hydraulic	Electrical		
MV2	٠	٠		
MV3	•	•		

Optional features


Please take in consideration that all combinations are not possible.

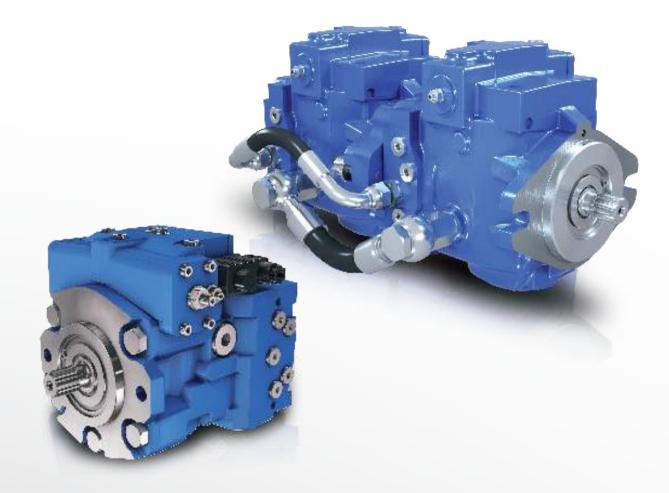
	MO	M1	M2	M3	MV2	MV3
Roller bearing	•	•	•	•	-	-
Flushing valve	-	•	•	•	-	-
Anticavitation valve	-	•	•	•	•	-
Relief valve	-	٠	٠	٠	-	-
Speed sensor	-	-	•	٠	•	-
Finishing coat	•	•	•	•	•	٠
UNF thread ports	٠	٠	٠	٠	٠	٠
Flange connection	-	•	٠	•	-	-
Fluorinated elastomer seals	•	•	•	•	-	-

M2 motor with speed sensor



Closed loop and variable displacement

MEDIUM DUTY PUMPS


Hydraulic Pumps for open and closed loops

Open loop and fixed displacement

HEAVY DUTY PUMPS

Axial piston technology Variable displacement Compact design A large choice of controls Embedded electronics Plug & Drive[™] solution

PM / PMe

MEDIUM DUTY PUMPS DESIGN FOR PERFORMANCE AND EASY INTEGRATION

PMV0 - PM10 - PM20 - PM30 - PMe30 PM50 - PMe50 - PM65

From 7 to 65 cm³/rev. [0.43 to 3.97 cu.in/rev.]

Up to 103,5 N.m [916 lbf.ft]

Up to 400 bar [5,800 PSI]

Up to 3 600 rpm

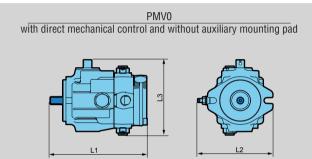
Up to 124,8 kW [167.4 HP]

Performance

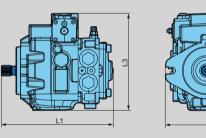
	-	PMV0	PM10	PM20	PM30 PMe30	PM50 PMe50	PM65
Displacement range	cm3/rev [cu.in/rev]	7 - 18 [0.43] - [1.10]	7 - 21 [0.43] - [1.28]	21 - 27.4 [1.28] - [1.67]	25 - 34,2 [1.53] - [2.09]	40 - 52 [2.44] - [3.17]	55 - 65 [3.36] - [3.97]
Rated Speed	RPM	3 600	3 600	3 600	3 600	3 600	3 600
Mar Drasaura	(Continuous) bar [PSI]	210 [3,045]	210 [3,045]	250 [3,626]	300 [4,350]	300 [4,350]	250 [3,625]
Max. Pressure	(Intermittent) bar [PSI]	300 [4,351]	350 [5,076]	350 [5,076]	400 [5,801]	400 [5,801]	350 [5,076]
Max. theorical absorbed power	kW [HP]	12,7 - 30,5 [17.0] - [40.9]	14,9 - 42,6 [20.0] - [57.1]	32,6 - 44,4 [43.7] - [59.5]	48,0 - 65,6 [64.4] - [88.0]	74,8 - 99,8 [100.3] - [133.8]	106,0 - 124,8 [142.1] - [167.3]

Mounting flanges and shafts

			PMVO	PM10	PM20	PM30 PMe30	PM50 PMe50	PM65
	Colined shoft	9 teeth, pitch 12/24	٠	٠				
Flange SAE A	Splined shaft	11 teeth, pitch 16/32	•	•				
		Diameter 15,875 [0.624]	•					
	Key shaft mm [in]	Diameter 18 [0.71]	•					
		Diameter 19,05 [0.75]		•				
		11 teeth, pitch 16/32		•				
	Splined shaft	13 teeth, pitch 16/32		•	•	•	•	
		14 teeth, pitch 12/24					٠	
Flange SAE B		Diameter 19,05 [0.75]		•				
	Key shaft mm [in]	Diameter 22,22 [0.87]						•
		Diameter 25,38 [0.99]					٠	
Flange SAE BB	Splined shaft	15 teeth, pitch 16/32			•	•	٠	•

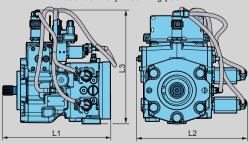

Auxiliary mounting pads

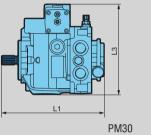
		PMV0	PM10	PM20	PM30 PMe30	PM50 PMe50	PM65
German group 1		٠	•				
German group 2		٠	•				
	9 teeth coupling		•	•	٠	•	٠
Flange SAE A	11 teeth coupling				٠	•	٠
Flange SAE B	13 teeth coupling				٠	•	٠
Flange SAE BB	15 teeth coupling				٠	•	٠
No auxiliary mounting	pad	٠	•	٠	٠	٠	•

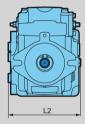

Dimensions

	-								
		PMV0	PM10	PM20	PM30	PMe30	PM50	PMe50	PM65
	mm	192,8	204,5	238	253,2	256,2	271,5	282,2	303,5
L1	[in]	[7.59]	[8.05]	[9.37]	[9.98]	[10.08]	[10.68]	[11.11]	[11.95]
L2	mm	107,4	144	174	221,7	290,5	218	289,5	223,5
LZ	[in]	[4.23]	[5.67]	[6.85]	[8,72]	[11.44]	[8.58]	[11.40]	[8.8]
L3	mm	129	187,7	207,2	212,2	290,5	214,5	299,0	232,5
LJ	[in]	[5.08]	[7.39]	[8.16]	[8.35]	[11.44]	[8.45]	[11.77]	[9.15]
Weight max.*	kg [lb]	9,5 [20.9]	18,8 [41.4]	20,8 [45.8]	29 [63.9]	31,5 [69.4]	32 [70.5]	32 [70.5]	30,5 [67.2]

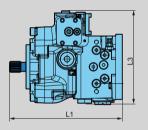
*Depending on the controls and the options.

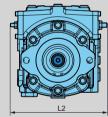

PM20 with hydraulic servo control and without auxiliary mounting pad

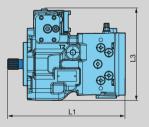

PMe30 without auxiliary mounting pad

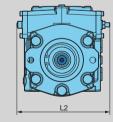


PMe50 without auxiliary mounting pad

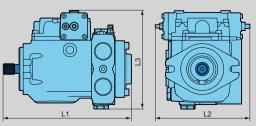



PM10 with hydraulic servo control and without auxiliary mounting pad


with hydraulic servo control and without auxiliary mounting pad



PM50


with hydraulic servo control and without auxiliary mounting pad

with hydraulic servo control and without auxiliary mounting pad

PMe: EMBEDDED ELECTRONIC

Reduce your development costs and time

The PMe is designed to be easily integrated into a wide variety of machines. The PMe's on-board ECU can withstand the harshest environments, including proximity to the combustion engine. The ECU is pre-wired and pre-programmed; after shipping, the system is ready to be connected to the driving devices (e.g. the travel pedal, joystick, brake pedal) and is ready to use.

The associated electronic devices are delivered already plugged onto the pump and wired to the ECU. The factory-installed harnesses are tested at the end of the assembly line prior to delivery. The two integrated CAN Buses allow configurating, machine diagnosing and information sharing with other machine components (e.g. engine, displays, hydraulic components).

Among the many pre-defined software functionalities included in the PMe packages, the speed control loop is available for specific applications that need constant driving speed, a pre-requisite being two speed sensors in the wheels. The PMe pump can also be used as a slave unit via CAN Bus. The CAN message redundancy allows for safe control of the pump. It ensures an accurate control thanks to an internal pump calibration. The PMe can also provide the plugged sensors' physical and electrical values (temperature, pressure, speed) via CAN Bus to the master ECU.

Controls

PUMPS

	PMV0	PM10	PM20	PM30	PMe30	PM50	PMe50	PM65
Direct mechanical (M)	٠	٠						
Direct mechanical with return spring (N)	•	•						
Direct mechanical with return spring and zero position setting (L)	•							
Mechanical servo control with feed-back (A)		•	٠	٠		•		•
Hydraulic servo control (S)	•	•	•	٠		•		٠
Hydraulic servo control with feed-back (T)		٠	•*	٠		٠		
Hydraulic Automotive Control (D)		٠	•*	٠		٠		٠
Electrical on-off servo control without electrovalve (C)		٠		٠		٠		٠
Electrical on-off servo control with return spring without electrovalve (B)		٠	•*	٠		٠		٠
Electrical on-off servo control with electrovalve (C12/C24)		٠		٠		٠		٠
Electrical on-off servo control with return spring and electrovalve (B12/B24)		٠	•*	٠		٠		٠
Electro-proportional servo control (P)		٠	•*	٠	٠	٠	٠	٠
Electro-proportional servo control with feed-back (Q)		٠	٠	٠	٠	٠	•	

* Under development 80 SELECTION GUIDE

Additional features

Please take in consideration that all combinations are not possible.

	PMV0	PM10	PM20	PM30 PMe30	PM50 PMe50	PM65	teta la
Fitting for rear power take-off (through shaft)	٠						a la
Electrical by-pass with brake engaged	•						
Mechanical inching		٠		٠	•	•	
Hydraulic inching		٠		٠	•	•	
Brake inching				•	•	ಡ	PN / PN
Lever by-pass	٠						thro
Low noise valve plate	٠						
Pressure filter	٠	٠	٠	•	•	•	
Flushing valve	•	٠	٠	٠	•	•	A Tranket street of a street
Safety valve		٠	٠	•	•		
Pressure cut-off valve (option LP)		٠		•*	•*	•	Con all
Anti-stall valve		٠		٠	•	•	
Neutral position switch (only for control A)		٠		•	•	•	
Roller bearing	•	٠	٠	•	•		200 A 10
UNF ports	٠	٠	٠	٠	•	•	The state
SAE ports	•	٠	•	•	•	•	Luc -
Speed sensor				•	•		and the second s
Fluorinated elastomer seals	٠	٠	٠	٠	•		No.
Inder development							

* Under development

PHAST PROGRAM

Fast delivery

Poclain Hydraulics is committed to supplying a number of standard pumps **within 10 business days**, excluding transport.

This delivery time applies to any order limited to one pump per Part Number, per customer and per month.

Making their selection from a predetermined list of pumps, machine manufacturers can choose from pumps with mechanical servo control (A) or hydraulic servo control (S) or electro proportional servo control (P) or electro proportional servo control with feeback (Q). All pumps are equipped with a high pressure relief valve setting, internal charge pump and charge relief valve setting, SAE A flange for the auxiliary mounting pad and a flushing valve.

Pump types

PMV0	PM10	PM30	PM50
•*	٠	•	•


 * Only available with M and L control

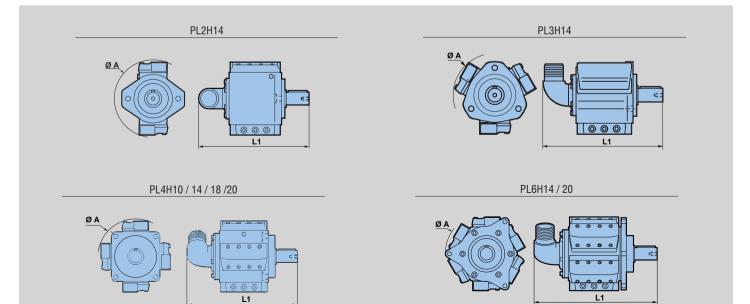
More information > Page 162

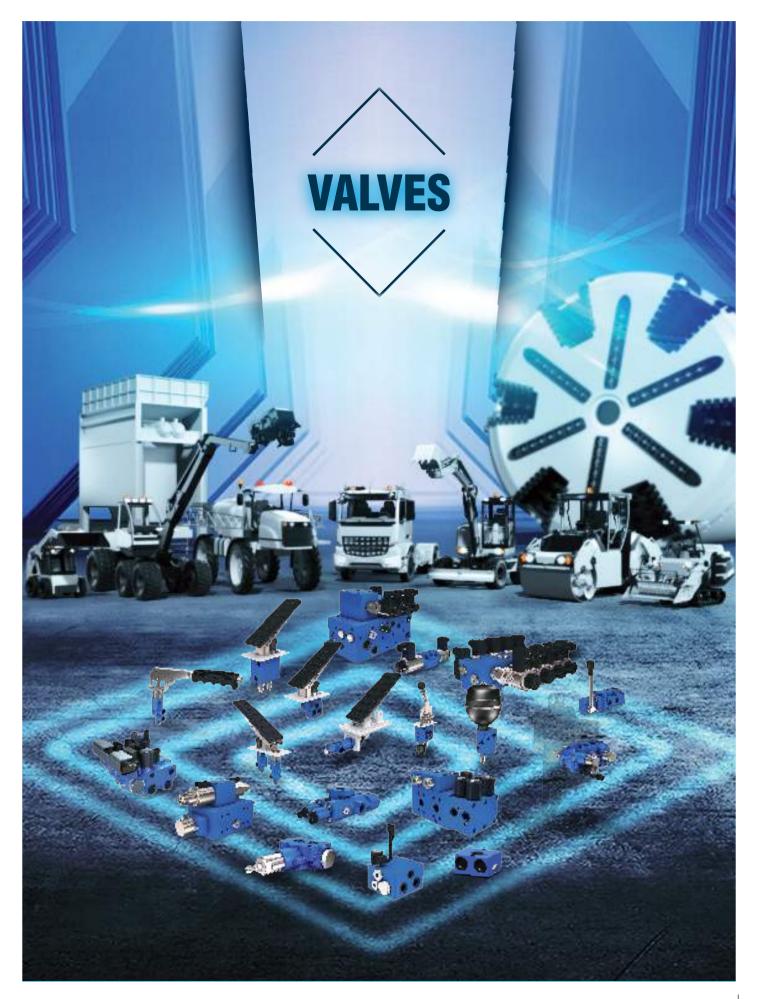
Visit our dedicated web page www.poclain-hydraulics.com/en/services/phast

PUMPS

Radial piston technology Fixed displacement High strength Robust and dust resistant

HEAVY DUTY PUMPS For open loops


Performance


		2 outputs	3 outputs	4 outputs	4 outputs	4 outputs	4 outputs
		PL2H14	PL3H14	PL4H10	PL4H14	PL4H18	PL4H20
Displacement	cm³/rev [cu.in/rev]	2 x 17.5 to 2 x 32 [2 x 1.07 to 2 x 1.95]	3 x 17.5 to 3 x 37 [3 x 1.07 to 3 x 2.26]	4 x 10.3 to 4 x 12.5 [4 x 0.63 to 4 x 0.76]	4 x 17.5 to 4 x 37 [4 x 1.07 to 4 x 2.26]	4 x 33 to 4 x 52 [4 x 2.01 to 4 x 3.17]	4 x 58 to 4 x 74 [4 x 3.54 to 4 x 4.52]
Max. Pressure	bar [PSI]	450 [6,526]	450 [6,526]	450 [6,526]	450 [6,526]	450 [6,526]	450 [6,526]
Max. Speed	RPM	3 100 to 2 400	3 400 to 2 400	2 700	3 100 to 2 000	2 500 to 2 400	2 400 to 2 300
Max. Power	kW [HP]	81 to 115 [109 to 155]	134 to 200 [180 to 269]	84 to 102 [113 to 137]	163 to 222 [219 to 298]	246 to 376 [331 to 506]	417 to 510 [561 to 686]

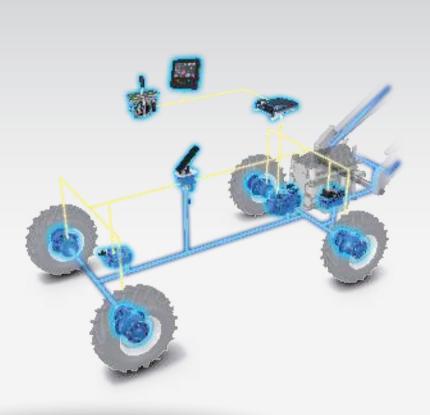
		6 outputs	6 outputs
		PL6H14	PL6H20
Displacement	cm³/rev [cu.in/rev]	6 x 17.5 to 6 x 32 [6 x 1.07 to 6 x 1.95]	6 x 58 to 6 x 74 [6 x 3.5 to 6 x 4.51]
Max. Pressure	bar [PSI]	450 [6,526]	450 [6,526]
Max. Speed	RPM	3 200 to 2 300	2 400 to 2 000
Max. Power	kW [HP]	252 to 331 [339 to 445]	626 to 666 [842 to 895]

Dimensions

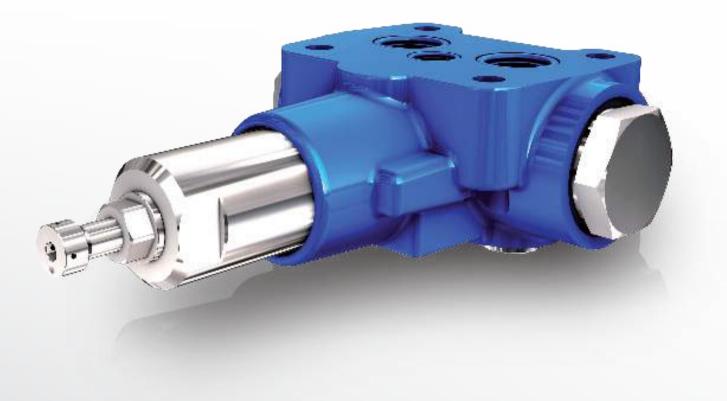
	-								
		PL2H14	PL3H14	PL4H10	PL4H14	PL4H18	PL4H20	PL6H14	PL6H20
Dia. A	mm	320	320	275	320	440	550	352	550
Dia. A	[in]	[12.60]	[12.60]	[10.83]	[12.60]	[17.32]	[21.65]	[13.86]	[21.65]
L1	mm	397	397	376	435	550	656	463	659
L1	[in]	[15.63]	[15.63]	[14.80]	[17.13]	[21.65]	[25.83]	[18.23]	[25.94]
Woight	kg	38	47	42	68	140	250	84	360
Weight	[lb]	[84]	[104]	[93]	[150]	[309]	[551]	[185]	[794]

DESIGNED FOR HYDROSTATIC TRANSMISSIONS

	Anti-Skidding Valves		
	Flow Dividers		
R	Freewheeling Valves		
SION	Exchanges Valves		p.88
S	Selector Valves		p.00
	Pressure Reducers		
	Serial Protection Valves		
		-	


VARIOUS BRAKING FUNCTIONS

Emergency and Parking Brake Valves Service Brake Valves Accumulator Charging Valves Service Brake and Accumulator Charging Valves Service Brake and Inching Valves Compact solution "All in one" Steering Assist Brake Valves Tractor and Trailer Brake Valves



Hydraulic Valves for open and closed loops

A LARGE RANGE OF FUNCTIONS

POWER TRANSMISSION VALVES

Anti-skidding valves Flow dividers Freewheeling valves Exchange valves Selector valves Pressure Reducers Serial Protection Valves

DESIGNED FOR HYDROSTATIC TRANSMISSIONS SIZED TO OPERATE AT HIGH PRESSURE AND HIGH FLOW

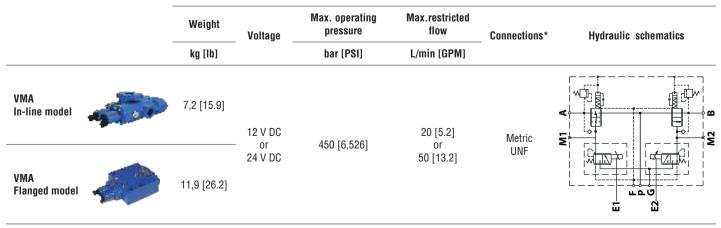
Anti-skidding valves

To control wheel slippage of hydrostatic self-propelled machines in rough terrain conditions. Poclain Hydraulics has developed two anti-skidding solutions that allow good traction control and maintain outstanding vehicle gradeability. The benefits of Twin-Lock™ and SmartDrive[™] Off-Road solutions are:

- synchronization of wheel speed to avoid soil damage
- optimized machine performance and stability
- reduced fuel consumption, and
- increased tire life (reduced wear)

Twin-Lock[™] valves

Twin-Lock[™] is a unique proactive hydraulic traction control that automatically transfers torque to the wheels with the greatest ground adhesion. Since it eliminates the need for flow dividers, it dramatically reduces the heat generation and horsepower loss of conventional traction control systems.


Twin-Lock[™] operates through a unique combination of serial and parallel connection between wheel motors. The Twin-Lock[™] valves prevent excessive pressure build-up in the serial lines, for instance when steering.

		Number of			Operation	Connections*	Hydraulic schematics		
		positions	kg [lb]	bar [PSI]	L/min [GPM]	operation		-	
VDP	VDP		2,6 [5.8]	- 450 [6,526]	26 - 50	Mechanical	Metric		
VDP		3			[7 - 13]		BSPP		
PR-TL-SV			9,5 [20.9]	450 [6,526]	30 - 50 [7.9 - 13]	Hydraulic	Metric		

SD-CT Off-Road[™] valves

SD-CT Off-Road[™] is an electronically managed traction control. By using wheel speed sensors for splippage detection and proportional valves for flow throttle, valve restricts flow only when slippage is detected. Entirely programmable, the system easily accommodates varying pump displacements and vehicle steering geometry to offer optimal performance.

SD-CT Off-Road™ can be installed by OEMs on production vehicles or offered as a conversion kit (Poclain Hydraulics motors just need to be eqipped with a pre-disposition for a speed sensor).

*Connecting dimensions: Metric = ISO 9974; BSPP = ISO 1179; UNF = ISO 11926-1, CETOP = ISO 4401

VALVES

Power Transmission Valves

ANTI-SKIDDING SYSTEMS

Increase the off-road capability of your machines

Wheel adherence is a critical factor with off road vehicles. Lose adequate wheel contact with the ground and you can lose control of your machine, put it temporarily out of service, cause premature tire wear, dramatically increase fuel consumption or churn up the site.

Poclain Hydraulics, has designed and developed systems to increase the performance of your machine on difficult ground conditions and steep gradients.

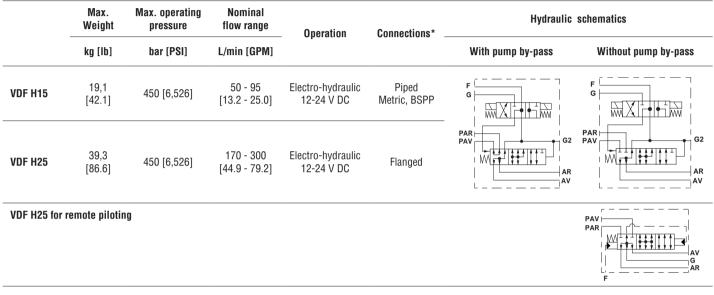
Twin-Lock system > Page 142 SD-CT Off-Road™ system > Page 144

Flow dividers

Flow divider controls the speed between wheels of the same axle or between different axles by dividing or combining the flow. The flow divider is equipped with an electric or hydraulic controlled by-pass and can be used in open or closed loop circuits.

		, 5	БЪ. Есептемало FD-H2-1	FD-H2-	2	FD-M2		D-M3 D-M4	
	Max. weight	Number	Division Ratio**	Max. operating pressure	Max. by-pass flow (ratio 50/50)	By-pass	Connections*	Hydraulic schematics	
	kg [lb]	- of outlets	(% of max. flow)	bar [PSI]	L/min [GPM]	- control		,	
FD-H2-1	19,0	2	50-50 60-40	500 [7,252]	200 [52.8]	Hydraulic or BSPP, UNF Electrical			
FD-H2-2	- [41.9]	_	70-30 80-20	[.,]	300 [79.3]				
FD-M2	8,0 [17.6]	2	50-50 70-30 60-40	420 [6,000]	150 [39.6]	Hydraulic or Electrical	_	FD-M4	
FD-M3	14,0 [30.9]	3	33-33-33	420 [6,000]	150 [39.6]	Electrical	UNF BSPP		
FD-M4	15,0 [33.1]	4	25-25-25-25 30-30-20-20 33,5-33,5-16,5-16,5	420 [6,000]	150 [39.6]	-			

*Connecting dimensions: Metric = ISO 9974; BSPP = ISO 1179; UNF = ISO 11926-1, CETOP = ISO 4401 ** Others ratio are available on-demand


Freewheeling valves

In an assist drive circuit, hydraulic motors are engaged when traction is needed, for instance, in rough terrain condition (off-road mode). At high speed (on-road mode) when traction condition are good, motors can be disengaged.

The freewheeling valve connects the high pressure ports of the motor to tank and allows pistons to stay retracted inside the cylinderblock: the motor is then freewheeled.

A pump by-pass option is of interest if the pump is only dedicated to the assist drive function.

Pressure Reducers

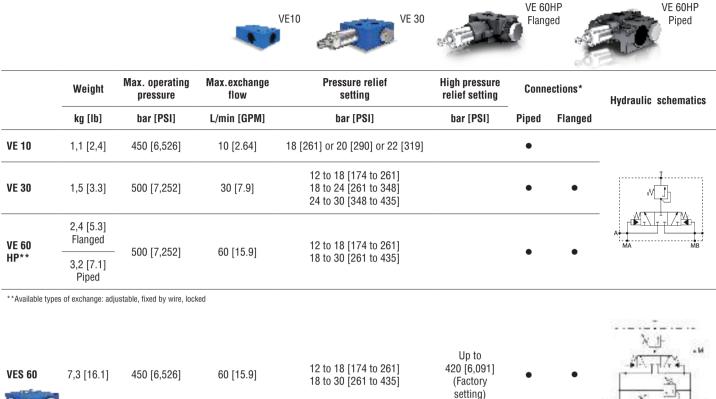
Pressure reducing valves limit the pressure in motor brake line or in auxiliary functions line.

	Type of setting	Weight	Pressure setting range	Max. operating pressure	Max.flow	Hydraulic	schematics	
		kg [lb]	bar [PSI]	bar [PSI]	L/min [GPM]	With check valve	Without check valve	
PR3S	Fix	0714641	.7 [1.54] 10 to 120 250 [3,626] 30 [7.92]					
PR3V	Variable	0.7 [1.54]		250 [3,626]	50 [3,626] 30 [7.92]			

Serial protection valves

Serial protection valve connects motors in serial line and provides protection of the motors against cavitation and overpressure.

	Max. operating pressure	Max.flow serial line	Max.flow cross line	Pressure relief setting	Connections*	Hydraulic schematics
	bar [PSI]	L/min [GPM]	L/min [GPM]			
0.5	400 [0 000]	110 [29.0]	63 [16.6]	F '	UNF	
SP	420 [6,000] -	160 [42.3]	75 [19.8]	FIX BSPP	BSPP	


*Connecting dimensions: Metric = ISO 9974; BSPP = ISO 1179; UNF = ISO 11926-1, CETOP = ISO 4401

TRET PER CRIVANCE

Exchange valves

Compact exchange valves bleed hot oil from the low pressure side of a hydrostatic transmission circuit to be cooled, filtered or used as a source of oil for flushing pump and motor cases.

For all VE (except VE10), exchange pressure setting can be tuned by customer.

Selector valves


- Two position flow directional control valve
- Circuit isolation
 Tool selection
- High flow bypass, very high pressure capability Nominal Max. operating Weight pressure flow range Operation Hydraulic schematics VD-3V2H20 bar [PSI] L/min [GPM] kg [lb] 92 - 170 Hvdraulic VD-2V2H20 8.5 [18.7] 450 [6,526] 12-24 V DC [25 - 44.9] 170 - 300 VD-3V2H25 8.5 [18.7] 450 [6,526] Hydraulic [44.9 - 79.2]

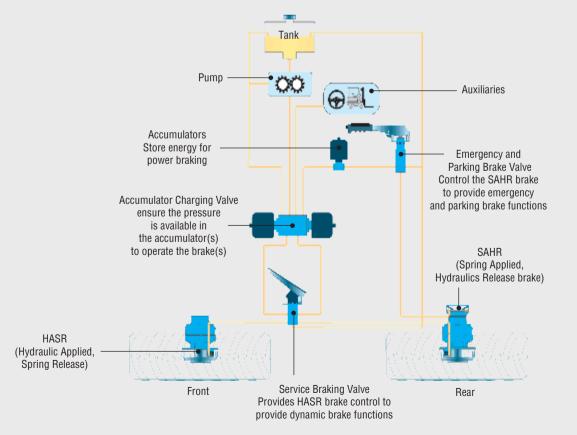
Customized valves and hydraulic blocks

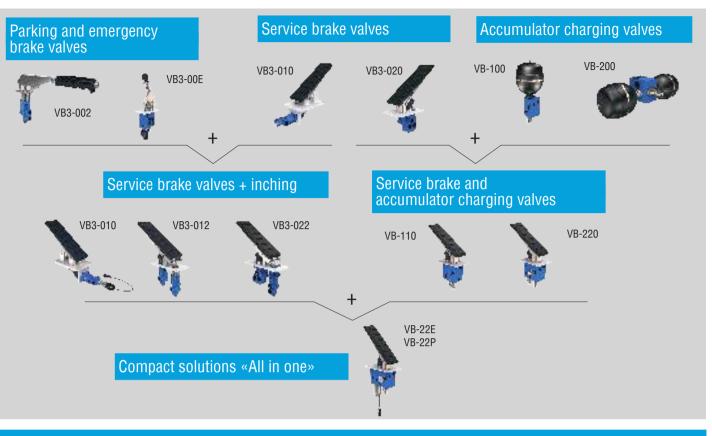
Special combo designs are custom made and bring several benefits to specific requirements of a customer:

- Elementary functions (Hot oil exchange, freewheeling, traction control, de-braking, serial protection, circuit selection, anti-cavitation, cross-relief) integrated in a compact multifunctional block results in outstanding performance
- Hydraulic ports position and size are adjusted for easy assembly on the machine
- Optimized dimension and weight
- Surface protection adapted to different environmental conditions

BRAKE VALVES

Parking and emergency brake valves Service brake valves Service brake valves + inching Accumulator charging valves Service brake and accumulator charging valves Compact solutions «All in one»


VARIOUS BRAKING FUNCTIONS FOR ALL TYPES OF HYDRAULIC CIRCUITS


Advantages of hydraulic brake valves (power braking type) are numerous

- No need for an additional supply source (air compressor)
- · Valves are fed by the hydraulic source on the machine
- Hydraulic accumulators are smaller than air reservoirs
- Faster response time thanks to available reserve of energy in accumulators
- Fewer risks of system contamination and no need for additional filters
- Comfortable and progressive feel

The Poclain Hydraulics braking systems can be adapted to handle your specific braking requirements.

Parking and emergency brake valves

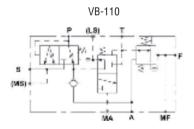
	Weight	Brake operating pressure	Circuit	Control	Actuator	
	kg [lb]	bar [PSI]	Gircuit	Control		
VB3-002	0,9 [2.0]	10 - 150 [145 - 2,175]	Single-circuit	Reverse modulating Hydraulic	Horizontal / Vertical lever Floor / Wall mount pedal	
VB3-00E	3,0 [6.6]	10 - 150 [145 - 2,175]	Single-circuit	Reverse modulating Electro-hydraulic	Horizontal / Vertical lever Wall mount pedal	
2015 2015	5/68					
VB-00M	3,8 [8.38]	20 100 [425 1 740]	Single-circuit	- On-Off	Electrical and Manual	
V D-UUIVI	4,3 [9.48]	30 - 120 [435 - 1,740]	Dual-circuit	011-011		

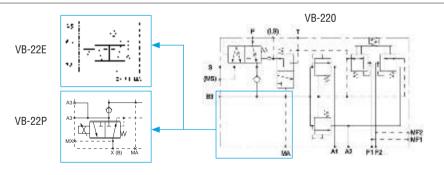
Service brake valves and inching

Weight Brake operating pressure						
wergin	blake operating pressure	- Brake type	Circuit	Control	Actuator	
kg [lb]	bar [PSI]	brane type	onoun	Connor		
1,0 [2.2]	20 - 150 [290 - 2,175]	Corrigo broko	Single-circuit	Modulating Mechanical	Floor / Wall mount pedal	
2,0 [4.4]	20 - 150 [290 - 2,175]	- Service Drake	Dual-circuit	Modulating Mechanical	Floor / Wall mount pedal	
3,5 [7.7]	20 - 150 [290 - 2,175]	Service brake	Single-circuit	Combined VB3-002 + VB3-010	Floor mount pedal	
4,1 [9.0]	4,1 [9.0] 20 - 150 [290 - 2,175]		Dual-circuit	Combined VB3-002 + VB3-020	Floor mount pedal	
	1,0 [2.2] 2,0 [4.4] 3,5 [7.7]	kg [lb] bar [PSI] 1,0 [2.2] 20 - 150 [290 - 2,175] 2,0 [4.4] 20 - 150 [290 - 2,175] 3,5 [7.7] 20 - 150 [290 - 2,175]	kg [lb] bar [PSI] Brake type 1,0 [2.2] 20 - 150 [290 - 2,175] Service brake 2,0 [4.4] 20 - 150 [290 - 2,175] Service brake 3,5 [7.7] 20 - 150 [290 - 2,175] Service brake	kg [lb] bar [PSI] Brake type Circuit 1,0 [2.2] 20 - 150 [290 - 2,175] Service brake Single-circuit 2,0 [4.4] 20 - 150 [290 - 2,175] Service brake Dual-circuit 3,5 [7.7] 20 - 150 [290 - 2,175] Service brake and inching Single-circuit	kg [lb] bar [PSI] Brake type Circuit Control 1,0 [2.2] 20 - 150 [290 - 2,175] Service brake Single-circuit Modulating Mechanical 2,0 [4.4] 20 - 150 [290 - 2,175] Service brake Dual-circuit Modulating Mechanical 3,5 [7.7] 20 - 150 [290 - 2,175] Service brake and inching Single-circuit Combined VB3-002 + VB3-010 4 1 [9 0] 20 - 150 [290 - 2,175] Dual-circuit Combined VB3-010	

* Electrical inching available, pedal position sensor

VALVES

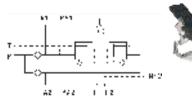

Brake Valves


Accumulator charging valves Flow rate Cut-in/ cut-out Weight pressure range To auxiliary To accumulator bar [PSI] kg [lb] Circuit Control I/min [GPM] I/min [GPM] 110 / 130 [1,595 / 1,888] VB-100 2,2 [4.8] Single-circuit Hydraulic 120 / 140 [1,740 / 2,031] 135 / 160 [1,958 / 2,321] 45 - 120 2.75 - 15 [0.73 - 3.96] [11.9 - 31.7] 160 / 190 [2,321 / 2,756] Hydraulic 170 / 200 [2,466 / 2,901] **VB-200** 4.0 [8.8] Dual-circuit 180 / 210 [2,611 / 3,046]

Compact solutions «All in one»

	Woishi			Cut-in/ cut-out	Brake operating	Flo	w rate	
	Weight			pressure range	pressure	To auxiliary	To accumulator	
	kg [lb]	Circuit	Control	bar [PSI]	bar [PSI]	l/min [GPM]	l/min [GPM]	Actuator
VB-110	5,0 [11.0]	Single-circuit	Hydraulic	110 / 130 [1,595 / 1,888]				
VB-220	6.0 [13.2]	Dual-circuit	Hydraulic	120 / 140 [1,740 / 2,031] 135 / 160 [1,958 / 2,321]				
VB-22E		Dual-circuit	Electro hydraulic	160 / 190 [2,321 / 2,756] 170 / 200 [2,466 / 2,901]	30 - 120 [435 - 1,740]	45 - 120 [11.9 - 31.7]	2.75 - 15 [0.73 - 3.96]	Floor mount / Lockable pedal
VB-22P	8.0 [17.6]	+ parking brake	Proportional Electro hydraulic	180 / 210 [2,611 / 3,046] 205 / 240 [2,973 / 3,481]*				

* Only available for VB-110 and VB-220 valves.



Customized VB valves

Special combo designs are custom made and bring several benefits to specific requirements of a customer:

- · Accumulators can be integrated directly on brake valve
- · Protection of accumulators from AUX over pressure
- Adaptation of pushing elements on VB3-010 (roller, thread)
- Integration of two braking valves on one actuator
- Integration of additional remote hydraulic piloting on standard braking valves
- Customization of mechanical actuators according to customer needs

Dual circuit brake valve with accumulators and customized component

VALVES

Relay valves VS as Relay valve VS as Quick return valve • Large volume brake actuation Fast tank return Long braking lines · Remote electric actuatioin of service brake ġ٨ Weight Max. brake operating pressure Max. flow rate to brake Circuit Control kg [lb] bar [PSI] I/min [GPM] 2,5 [5.5] 210 [3,045] 70 [18.50] VS Single-circuit Hydraulic

Electrically piloted brake valve

	Weight kg [lb]	Brake operating pressure bar [PSI]	Max. flow rate to brake	– Brake type	Pressure control	
VBR-010	2,5 [5.5]	10 - 115 [145 - 1,667]	20 [5.28]	Service brake	Proportional	/⊡++++ ; * 0

TRACTOR AND DUAL LINE TRAILER BRAKING SOLUTIONS

Valves compatibility and modularity

Whether you want to fit Hydraulic or Electro-hydraulic brake valves on your tractor/trailer, you can choose any of our products.

It is possible to mix and match hydraulic and electro-hydraulic components.

Poclain Hydraulics can design specific brake valves to answer your needs regarding space constraints, function integration, and/or develop specific performance characteristics.

		Hydraulic solution	Electro-hydraulic solution
1	Parking and emergency brake valves	VB3-002	VB3-00E
2	Steering assist valves	VB3-0B0 VB3-0D0	-
3	Trailer brake valves	VFR-0HX	VFR-0EX VBT
4	Energy management block valve	-	EMB
	More information > Page 150		

with cast design

Steering assist valves

The VB3-0B0 and VB3-0D0 valves, combined with a double brake pedal, have the following functionalities:

operating

- Off-road: steering assist braking for field work gives U-turn capability by braking the inner rear wheel. Each of the circuit selectors are associated with one of the pedals. VB3-0B0
- On-road: mechanically linked pedals allow effective service braking.
- Dual circuit steering assist valve (VB3-0D0) acts on brakes in which improves driving control and safety.
- VB3-0D0 always allows independent braking in case of circu

Weight

kg [lb]

7,0 [15.4]

7,0 [15.4]

akes in rear and	front axles	
f circuit leakage d	on one of the axles.	VB3-0D0
Max. brake perating pressure	Service brake pressure	with cast design
bar [PSI]	bar [PSI]	del -
250 [3,626]	150 [2,176]	
250 [3,626]	150 [2,176]	

Trailer brake valves

VB3-0B0

VB3-0D0

Trailer brake valves allow to apply the trailer brake pressure based on the tractor brake pressure. They supply auxiliary equipment and are therefor equipped with a priority spool in order to supply the trailer brakes when needed (i.e. the priority is given to the brakes).

VFR-0EX

Steering assist brake

(Single circuit) Steering assist brake

(Dual circuit)

(EU 2015/68 regulation)

The VFR Valves are simple single circuit trailer service brake, hydraulically or electrically piloted, mounted on the tractor.

The VBT valves are single or dual circuit electronically piloted trailer service brake valves, mounted on the tractor. Beside main control line (single circuit), dual circuit contains negative emergency braking on its supplementary line.

The EMB valves are electronically piloted dual circuit service trailer service brake valves with secundary emergency brake on supplementary line. By mounting on trailer gives another option in comparison to VBT (mounted on tractor).

					Weight -	Flow rate		
					weigin	To brake	To auxiliary	
		_	Control	Circuit	kg [lb]	l/min [GPM]	l/min [GPM]	
	VFR-0HX	Trailer service brake	Hydraulic	Single	6,5 [14.3]	50 [12]	200 [53]	
ON THE	VFR-0EX	Trailer service brake	Electronic	Single	6,5 [14.3]	50 [13]		
TRACTOR	VBT	Tallacaria hada	Electronic	Single	10 [22]	50 [13]	100 [26.5]	
	VDI	Trailer service brake	Electronic –	Dual	16 [35.2]	50 [13]	100 [26.5]	
ON THE Trailer	EMB	Energy Management Block Valve	Electronic	Dual	15,2 [33.4]	30 [7.8]		

OPEN LOOP VALVES

Directional control valves Check valves Pressure control valves Flow control valves

A LARGE RANGE OF FUNCTIONS TO ANSWER EVERY NEED

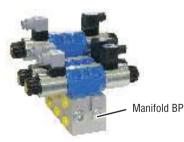
Directional control valves

CETOP valves

Valves for sub-plate connection to ISO 4401

	Actuation		ize IG)	Max. operating pressure	Flow rate	Modular Mounting*	Weight	Hydraulic schematics	
		6	10	bar [PSI]	l/min [GPM]	Mounting* -	kg [lb]	(examples)	
4/2 and 4/3									
KV	Hydraulic ———	٠		350 [5,077]	80 [21.1]	CETOP	1,4 [3.1]	А В АААГТ	
ĸv		350 [5,077]	130 [34.2]	CETOP	4,0 [8.8]				
KV	Mechanical	٠		350 [5,077]	60 [15.8]	CETOP	2,0 [4.5]		
	Weenamear		٠	350 [5,077]	100 [26.4]	CETOP	5,2 [11.5]	a P T	
KV (5KL)	Electrical	٠		350 [5,077]	75 [19.8]	CETOP	2,2 [4.9]		
KV (5KO)	Electrical		٠	350 [5,077]	120 [31.6]	CETOP	7,3 [16.1]	° <u>C </u>	
KV (3KO)	Electrical	•		250 [3,626]	40 [10.5]	CETOP	1,8 [3.9]		
KVP proportional	Electrical	•		350 [5,077]	30 [7.9]	CETOP	2,2 [4.9]	<u>भून</u> े(नि	
PKV-10	Indirect hydraulic		•	210 [3,046]	60 [15.8]	CETOP (Non modular)	3,2 [7.0]		

KV-3KO

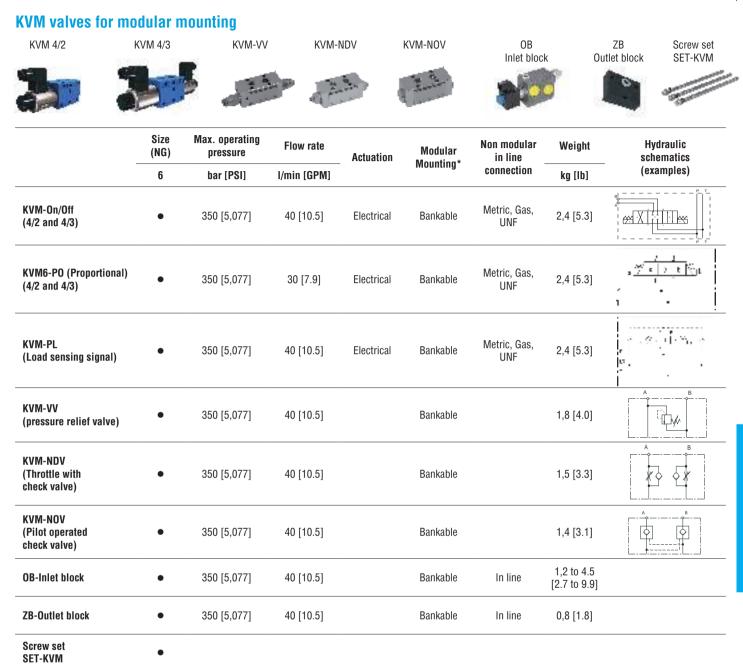

KV-5KL

KVP

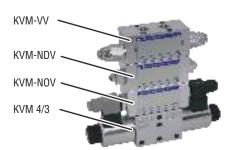
PKV

Manifolds for CETOP valves

	Size	(NG)	Max. operating Flow rate pressure		Connections*	Weight	
	6	10	bar [PSI]	l/min [GPM]		kg [lb]	
Manifold BP	٠		350 [5,077]	80 [21.1]	CETOP	2,3 to 41.2	
(max. 8 stations)		٠	350 [5,077]	120 [31.6]	CETOP	[5.1 to 90.8]	

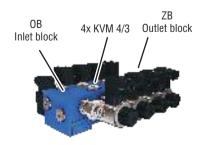

Subplates for CETOP valves

	Size	(NG)	Max. operating Flow rate pressure		Connections*	Weight	
	6	10	bar [PSI]	l/min [GPM]		kg [lb]	
Subplates PP-KV	•		350 [5,077]	80 [21.1]	CETOP	0,9 [2.0]	
(max.1 station)		٠	350 [5,077]	120 [31.6]	CETOP	2,3 [5.1]	



*Connecting dimensions: Metric = ISO 9974; Gas = ISO 1179; UNF = ISO 11926-1, CETOP = ISO 4401

Open Loop Valves



Vertical stacking

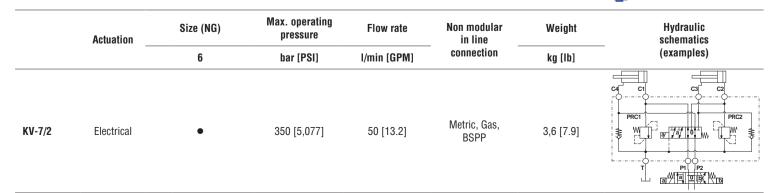
Bankable mounting

(+)

A Large Range Of Functions

* 250 bar [3,626 PSI] without drain release and 350 bar [5,077 PSI] with drain release.

6/2 selector valves for modular mounting



KV-7/2-6

	Actuation		Size (NG)		Max. operating pressure	Flow rate Non modular in line	Weight	Hydraulic schematics	
		6	8	10	bar [PSI]	l/min [GPM]	connection	kg [lb]	(examples)
		٠			315 [4,569]	50 [13.2]	Metric, Gas, UNF	2,7 [5.9]	
кин	Electrical		•		350 [5,077]	90 [23.8]	Metric, Gas, UNF	3,8 [7.7]	
				٠	315 [4,569]	120 [31.6]	Metric, Gas, UNF	5,5 [12.1]	P1 P2

7/2 selector valves

The KV-7/2 valve is used as diverter between two hydraulic cylinders which are not operated simultaneously. This is the perfect solution for all applications where pressure peaks appear because of mechanical shocks acting on hydraulic cylinder(s).

VALVES

104 SELECTION GUIDE

Open Loop Valves

8/3 selector valves

	Actuation	Size (NG) 6	Max. operating pressure bar [PSI]	Flow rate I/min [GPM]	Non modular in line connection	Weight kg [lb]	Hydraulic schematics (examples)
KV	Electrical	٠	250 [3,626]	50 [13.2]	Metric, Gas, UNF	3,8 [8.4]	$\begin{array}{c} C D E F \\ a \\ a \\ b \\ c \\ c$

Piped assembly valves

KVC-3/2

This valve (NG 10) can be used to by-pass one half of a Twin-Lock ™ motor to create a two speeds machine.

KVC2-3/2

This valve is often used to control parking brake actuation and displacement switch of motors.

	Actuation		ze IG)	Max. operating pressure	Flow rate	Non modular in line	Weight	Hydraulic schematics
		4 10		bar [PSI]	l/min [GPM]	connection	kg [lb]	(examples)
KVC-3/2-4	Electrical	٠		160 [2 320]	16 [4.2]	Metric, Gas	1,6 [3.5]	A a lath b
KVC-3/2-10	Electrical		٠	350 [5 077]	100 [26.4]	Metric, Gas, UNF	7,1 [15.6]	
KVC2-3/2-4	Electrical	٠		160 [2 320]	16 [4.2]	Metric, Gas, UNF	3,5 [7.7]	

Dedicated valve for snow plough

The KV-7/3-6 valve has been designed especially for use on variable V-blade snow plows, it allows to switch between tilting each blade individually or both simultaneously. The integrated pressure relief valves prevent hydraulic circuit against pressure peeks and the hydraulic accumulator absorbs impact energy to return it back to the circuit through check valves.

	Actuation	Size (NG)	Max. operating pressure	Flow rate	Non modular in line	Weight	Hydraulic schematics
		6	bar [PSI]	l/min [GPM]	connection	kg [lb]	(examples)
KV-7/3	Electrical	•	350 [5,077]	50 [13.2]	Metric, Gas, BSPP	3,6 [7.9]	

A Large Range Of Functions

Flow cont	rol valv	es						
			VP-NDV	Г	VTC	TV ST	TP-P0 TVTP-P TVTP-B	DTP
	Size (NG)		Max. operating pressure	Flow rate	- Connections*	Setting Method	Weight	 Hydraulic schematics
	6	10	bar [PSI]	l/min [GPM]			kg [lb]	
Throttle/che	ck valve							
VP-NDV	•		350 [5 076]	60 [15.8]	– CETOP	Manual -	1,4 [3.2]	
		•	350 [5 076]	100 [26.4]	UEIUM	wanual	3,3 [7.3]	
Pressure co	mpensate	ed flov	w control valves					
TVTC	•		350 [5 076]	50 [13.2]	in line Metric, Gas, UNF	Mechanical	3,0 [6.6]	
TVTP-P	•		210 [3 046]	50 to 90 [13.2 to 23.8]	Cartridge	Electric proportional	1,0 [2.2]	. 🏹
· v · r · r		•	210 [3 046]	90 to 150 [23.8 to 39.6]	Cartridge	Electric proportional	1,6 [3.5]	
TVTP-PO	•		210 [3 046]	60 to 90 [15.9 to 23.8]	Cartridge	Electric proportional	1,0 [2.2]	3
TVTP-B	•		350 [5 076]	60 to 90 [15.9 to 23.8]	Cartridge	Manual	0,6 [1.3]	<u>}</u>
		•	350 [5 076]	90 to 150 [23.8 to 39.6]	Cartridge	Manual	1,0 [2.2]	
Flow divider:	S							
DTP	•		350 [5 076]	_ 20 to 70	in line		1,7 [3.8]	
		٠	350 [5 076]	[5.3 to 18.5]	Metric, Gas, UNF		2,7 [5.9]	

PHAST PROGRAM

More information > Page 162 Visit our dedicated web page www.poclain-hydraulics.com/en/services/phast

Fast delivery

Poclain Hydraulics is committed to supplying valves within 5 business days, excluding transport.

- Up to 5 pieces for each part number delivery within 5 days max.

- Up to 50 pieces for each part number delivery up to 4 weeks.

Valves type

Directional control valves	Bankable mounting	Vertical stacking	Chek valves	Pressure control valves	Flow control valves
KV6K2 KV-6/2-6 KVC-3/2-4 KVC-3/2-10 KV-8/3-6 KVH-6/2 KV CETOP (3;5) KVC	KVM OB-KVM-6 ZB-KVM-6	KVM-VV-6 KVM-NDV-6 KVM-NOV-6	NOV VP-NDV VP-NOV	VP-RT	DTP TVTC TVTP

ast

VALVES

Open Loop Valves

Check valves

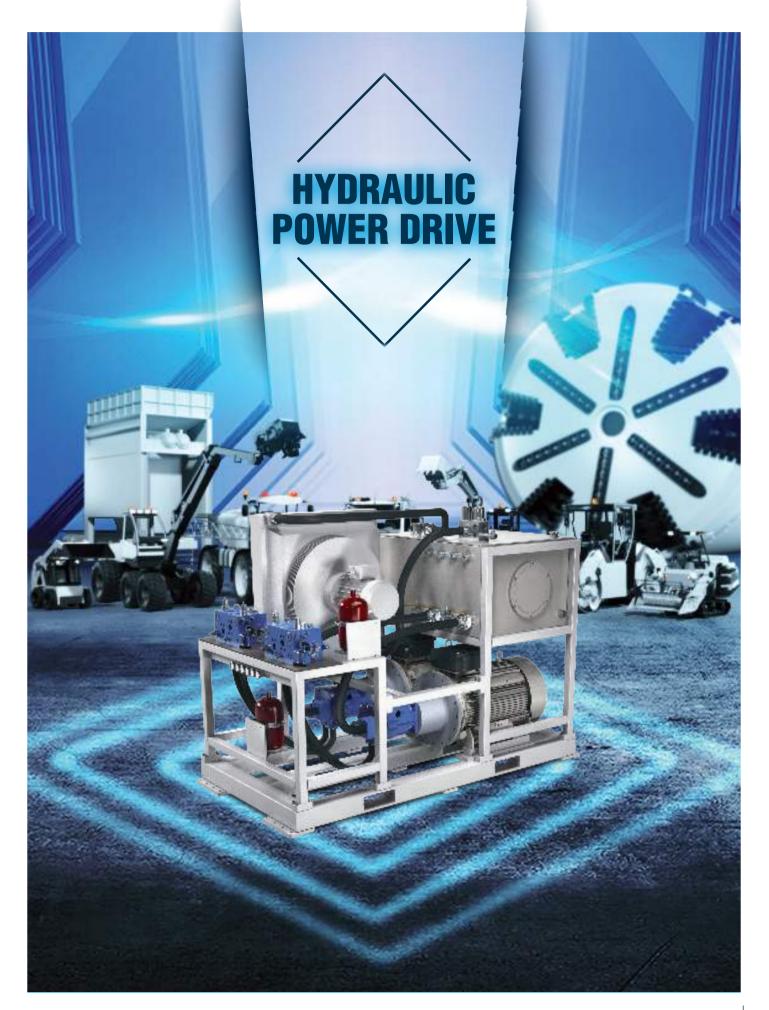
		VP-NV		VP-NOV	NOV-E		
Size	(NG)	Max. operating pressure	Flow rate	Connections*	Weight	Hydraulic schematics	
6	10	bar [PSI]	l/min [GPM]		kg [lb]		
valves							
٠		350 [5 076]	50 [13.2]	CETOP	0,9 [1.9]		
	٠	350 [5 076]	100 [26.4]	[26.4] CETOP	2,8 [6.1]		
•		350 [5 076]	60 [15.8]	CETOP	1,8 [3,9]		
	٠	350 [5 076]	100 [26.4]	CETOP	3,5 [7.7]		
alves							
•		350 [5 076]	60 [15.8]	in line Gas, UNF	1,5 [3.3]	$\begin{array}{cccc} A_2 & B_2 \\ \hline & & \\ I & & \\ I & & \\ I & & \\ I & & \\ A_1 & & B_1 \end{array}$	
٠		350 [5 076]	35 [9.2]	in line	0,5 [1.1]	Z	
	٠	350 [5 076]	50 [13.2]	Gas, UNF	0.7 [1.4]	B L-	
piloted v	alve						
•		270 [3 916]	60 [15.8]	CETOP	1,8 [4.0]	$ \begin{array}{c} B_V & A_V \\ \hline \\ B_P & A_P \\ \hline \\ B_P & A_P \\ \end{array} \begin{array}{c} P_V T_V \\ \hline \\ P_P T_P \\ \hline \\ P_P T_P \\ \end{array} $	
	6 valves ralves	valves • • • •	Size (NG) Max. operating pressure 6 10 bar [PSI] valves 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076] • 350 [5 076]	Size (NG) Max. operating pressure Flow rate 6 10 bar (PSI) I/min (GPM) valves 350 (5 076) 50 (13.2) • 350 (5 076) 100 (26.4) • 350 (5 076) 60 (15.8) • 350 (5 076) 100 (26.4) • 350 (5 076) 60 (15.8) • 350 (5 076) 60 (15.8) • 350 (5 076) 60 (15.8) • 350 (5 076) 60 (15.8) • 350 (5 076) 60 (15.8) • 350 (5 076) 50 (13.2) • 350 (5 076) 50 (13.2) • 350 (5 076) 50 (13.2)	Size (NG) Max. operating pressure Flow rate Connections* 6 10 bar (PSI) I/min (GPM) Certop • 350 (5 076) 50 (13.2) CETOP • 350 (5 076) 100 (26.4) CETOP • 350 (5 076) 60 (15.8) CETOP • 350 (5 076) 100 (26.4) CETOP • 350 (5 076) 60 (15.8) CETOP • 350 (5 076) 60 (15.8) CETOP • 350 (5 076) 60 (15.8) Gas, UNF • 350 (5 076) 35 (9.2) in line • 350 (5 076) 50 (13.2) in line	Size (NG) Max. operating pressure Flow rate pressure Connections* Weight kg [lb] 6 10 bar [PSI] I/min [GPM] Connections* kg [lb] valves - 350 [5 076] 50 [13.2] CETOP 0.9 [1.9] - 350 [5 076] 100 [26.4] CETOP 2.8 [6.1] - 350 [5 076] 60 [15.8] CETOP 3.5 [7.7] - 350 [5 076] 100 [26.4] CETOP 3.5 [7.7] ralves - 350 [5 076] 60 [15.8] GETOP 3.5 [7.7] - 350 [5 076] 60 [15.8] GETOP 3.5 [7.7] ralves - 350 [5 076] 60 [15.8] 0.5 [1.1] - 350 [5 076] 35 [9.2] in line Gas, UNF 0.5 [1.1] - 350 [5 076] 50 [13.2] in line Gas, UNF 0.5 [1.1] - 350 [5 076] 50 [13.2] in line Gas, UNF 0.7 [1.4]	

Pressure control valves

Size			+ ·	1936	0.00		
	(NG)	Max. operating pressure	Flow rate	Connections*	Oneration	Weight	Hydraulic schematics
6	10	bar [PSI]	l/min [GPM]		oporation	kg [lb]	nyuruuno oononnutoo
٠		400 [5 802]	50 [13.2]	Cartridge,	Direct	0,5 [1.1]	
	•	400 [5 802]	120 [31.7]	in line	Direct	0,6 [1.3]	, TT Nav.
•		210 [3 046]	60 [15.9]	in line Metric, Gas, UNF	Direct	1,8 [4.1]	
•		350 [5 076]	50 [13.2]	CETOP		1,7 [3.8]	B, A, VP-RT-EB P, T,
	•	350 [5 076]	100 [26.4]	- GETUP	FIIOL	2,6 [5.7]	B, A, P, T,
	6 •	6 10 • •	6 10 bar [PSI] • 400 [5 802] • 400 [5 802] • 210 [3 046] • 350 [5 076]	6 10 bar [PSI] I/min [GPM] • 400 [5 802] 50 [13.2] • 400 [5 802] 120 [31.7] • 210 [3 046] 60 [15.9] • 350 [5 076] 50 [13.2]	pressure Connections* 6 10 bar [PSI] I/min [GPM] Cartridge, in line • 400 [5 802] 50 [13.2] Cartridge, in line • 400 [5 802] 120 [31.7] Cartridge, in line • 210 [3 046] 60 [15.9] in line Metric, Gas, UNF • 350 [5 076] 50 [13.2] CETOP	pressure Connections* Operation 6 10 bar [PSI] I/min [GPM] Cartridge, in line Direct • 400 [5 802] 50 [13.2] Cartridge, in line Direct • 400 [5 802] 120 [31.7] Cartridge, in line Direct • 210 [3 046] 60 [15.9] in line Metric, Gas, UNF Direct • 350 [5 076] 50 [13.2] CETOP Pilot	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Customized valves and hydraulic blocks

Special combo designs are custom made and bring several benefits to specific requirements of a customer:


- Elementary functions integrated in a compact multifunctional block results in outstanding performance
- Hydraulic ports position and size are adjusted for easy assembly on the machine
- Optimized dimension and weight
- Surface protection adapted to different environmental conditions

Flow divider and diverter

VALVES

A Large Range Of Functions

Compact design Several models for single and dual drive Designed to drive Poclain Hydraulics radial motors Designed for closed loop circuit Over pressure protection Anti-cavitation with accumulator Air or Water cooling system

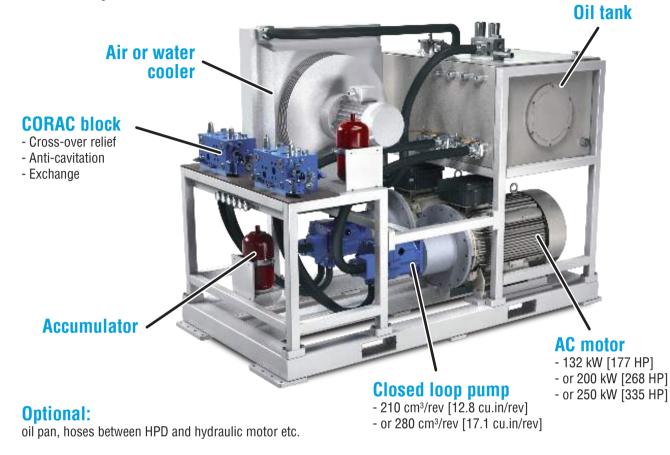
HYDRAULIC POWER DRIVES FOR CLOSED LOOP SYSTEMS

HPD Single hydraulic motor drive HPD Dual hydraulic motor drive

Up to 500 kW [670.5 HP]

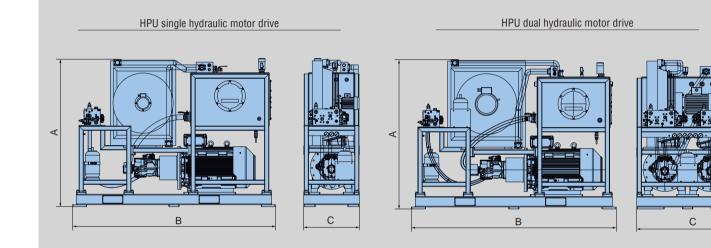
Up to 560 cm³/rev [37.17 cu.in/rev] (Main pump displacement)

Up to 450 bar [6,526 PSI]



Components

Complete solution in a single compact unit. Several models designed to fit the customer needs.



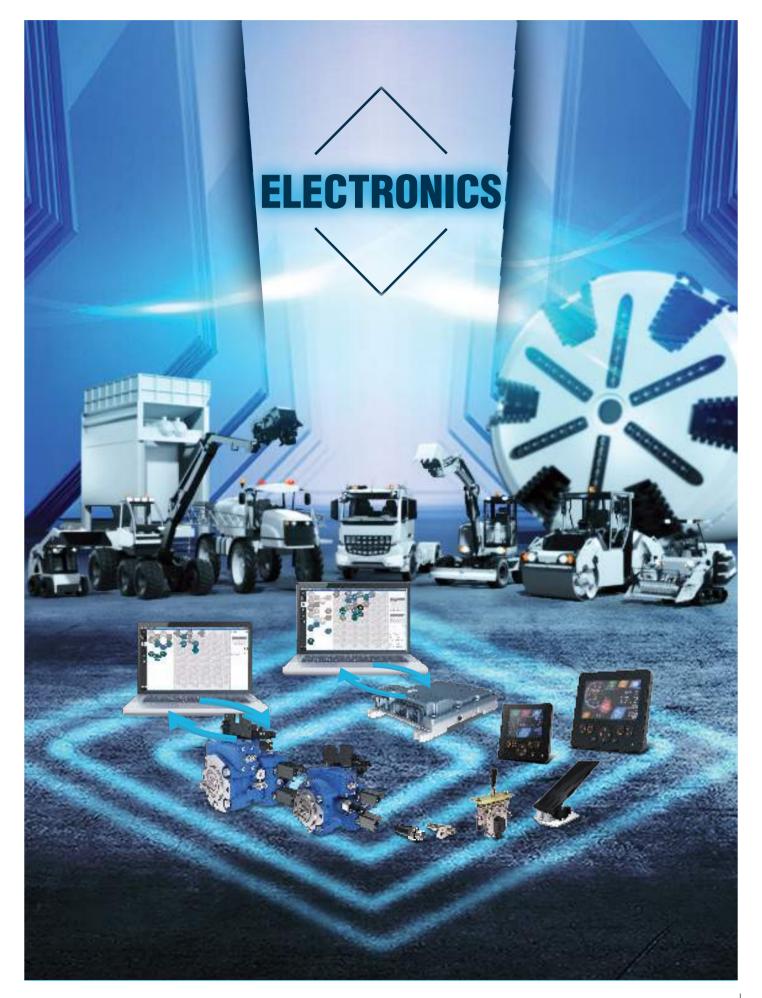
Main models

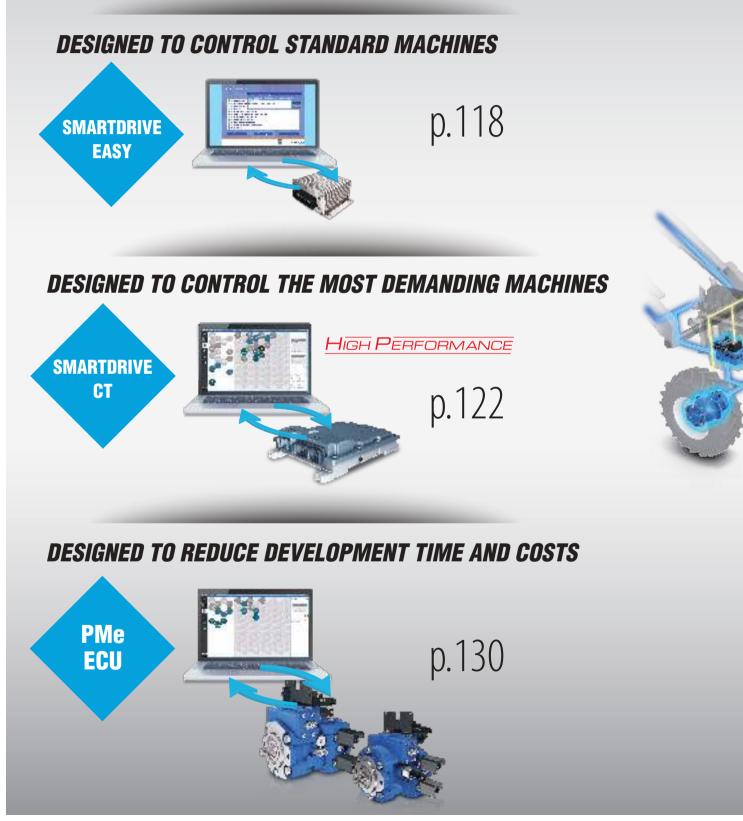
These are the main models of HPD. Poclain Hydraulics can provides others models on request.

	HPD Model	AC Motor kW [HP]	Closed loop pump cm³/rev [cu.in/rev]	Preferred Hydraulic motor
	\$.1	132 [177]	210 [12.8]	MHP20 or MHP27 or MS50 or MS83 or MS125
	\$.2	132 [177]	280 [17.1]	MHP20 or MHP27 or MS50 or MS83 or MS125
	S. 3	200 [268]	210 [12.8]	MHP20 or MHP27 or MS125 or MI250
Single hydraulic	S.4	200 [268]	280 [17.1]	MHP20 or MHP27 or MS125 or MI250
motor drive	S. 5	200 [268]	2 x 210 [2 x 12.8]	MHP20 or MHP27 or MS125 or MI250
	S.6	250 [335]	280 [17.1]	MI250
	\$.7	250 [335]	2 x 210 [2 x 12.8]	MI250
	S.8	250 [335]	2 x 280 [2 x 17.1]	MI250
	D.1	2 x 132 [2 x 177]	2 x 210 [2 x 12.8]	2 x MHP20 or MHP27 or MS50 or MS83 or MS125
	D.2	2 x 132 [2 x 177]	2 x 280 [2 x 17.1]	2 x MHP20 or MHP27 or MS50 or MS83 or MS125
	D.3	2 x 200 [2 x 268]	2 x 210 [2 x 12.8]	2 x MHP20 or MHP27 or MS125 or MI250
Dual hydraulic	D.4	2 x 200 [2 x 268]	2 x 280 [2 x 17.1]	2 x MHP20 or MHP27 or MS125 or MI250
motor drive	D.5	2 x 200 [2 x 268]	2x 2 x 210 [2 x 2 x 12.8]	2 x MHP20 or MHP27 or MS125 or MI250
	D.6	2 x 250 [2 x 335]	2 x 280 [2 x 17.1]	2 x MI250
	D.7	2 x 250 [2 x 335]	2x 2 x 210 [2 x 2 x 12.8]	2 x MI250
	D.8	2 x 250 [2 x 335]	2 x 2 x 280 [2 x 2 x 17.1]	2 x MI250

		Singl	e hydraulic motor	drive	Dua	l hydraulic motor (drive
	_	132 kW	200 kW	250 kW	2 x 132 kW	2 x 200 kW	2 x 250 kW
	mm	2 228	2 278	2 278	2 254	2 278	2 278
A	[in]	[87.7]	[89.7]	[89.7]	[88.7]	[89.7]	[89.7]
В	mm	2 720	3 120	3 779	2 920	3 120	3 829
D	[in]	[107.1]	[122.8]	[148.8]	[114.9]	[122.8]	[150.7]
C	mm	855	855	907	1 550	1 550	1 654
U	[in]	[33.6]	[33.6]	[35.7]	[61.0]	[61.0]	[65.1]

LARGE SIZE HYDRAULIC MOTORS


Reliability, ease of integration and performance


Reliability, ease of integration and performance are key selection criteria for high displacement hydraulic motors, especially for application in harsh environments. To meet these requirements, Poclain Hydraulics offers a complete range of large size hydraulic motors with all the benefits of radial piston technology (high torque, efficiency, easy control, robustness,...) and a displacement of up to 30 liters.

-	Max. Pressure bar [PSI]	Displacement range cm³/rev [cu.in/rev]	Max. Torque N.m [lbf.ft]	Max. Speed RPM	Max. Power kW [HP]
MHP20 to MHP27	500 [7,252]	473 to 3 526 [28.9 to 215.2]	28 059 [20,695]	548	280 [375]
MS50 to MS125	450 [6,527]	3 500 to 15 000 [213.5 to 915]	77 000 [56,792]	200	240 [322]
MI250	450 [6,527]	17 500 to 30 000 [1,037 to 1,831]	167 112 [123,255]	100	500 [671]

More information MS motors > Page 12 More information MHP motors > Page 24 More information MI motors > Page 52 Hydraulic Power Drives / Closed Loop Systems

ELECTRONICS

Electronic management of hydrostatic transmissions

Ready-to-use solutions

Well suited to the architecture of your machine, our electronic solutions can be integrated without additional major investments. You control the costs and time-to-market of your machines.

Solutions that improve the performance and the control of your machines

The combined efficiencies of our Electronic Control Units and our software can optimize your machine by adjusting their performances exactly to your needs.

Customizable and easy to use

With intuitive ergonomic interfaces, the handling of our electronic solutions is simple and fast. It is easy to set up your own software to achieve the desired performance.

HARDWARE TO COMMAND AND CONTROL

Designed To Control Standard Applications

SMARTDRIVE EASY

Very compact One CAN bus IP65 water resistant E24 10R-05 1942 certified Generic embedded software Configuration and diagnostic tool

DESIGNED TO CONTROL STANDARD MACHINES

Easy to integrate

The small size of the SD-Easy Electronic Control Unit (ECU) makes it easy to integrate in the cabin or anywhere on the machine. Operational in a temperature range of - 40°C to +85°C [-40°F to 185°F], the SD-Easy is IP65, which makes it water resistant.

Easy to set-up

A list of functions ready-to-use allows you to set-up the ECU to comply with your requirements.

For standard applications

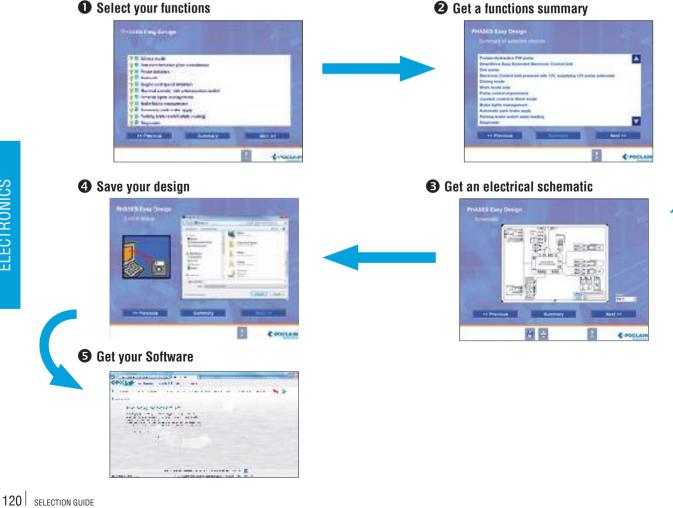
The SD-Easy is used for standard applications that do not require many inputs/outputs and not more than one CAN bus.

Very easy to wire, use and diagnose, the simple regulation loops used for the control command make it also very easy to parameterize.

A long experience for robustness

Today, this ECU is used on hundreds of applications. It has collected and capitalized a lot from this long experience, so that today you can benefit very easily from this wealth of knowledge for your application.

SD-Easy characteristics


А	14
bits	16
ANA	5
DIN	5
FREQ	2
STOR 0,5A	4
PWM 2A	4
5V	1
12V	1
	1
	1
	IP65
	E24 10R-05 1942
°C [°F]	- 40 to 85 [- 40 to 185]
	bits ANA DIN FREQ STOR 0,5A PWM 2A 5V 12V

Weight	kg [lb]	0,5 [1.1]
Dimension L x l x h	mm [in]	138 x 90 x 53,1 [5.43 x 3.54 x 2.09]

Easy-Design: Design your own management software

Easy Design is a PC software that allows you to design your dedicated software in five very simple steps. Starting from a list of generic functions, you can select which ones you would like to use for your application. The generated software is then ready to use.

Select your functions

SmartDrive Easy

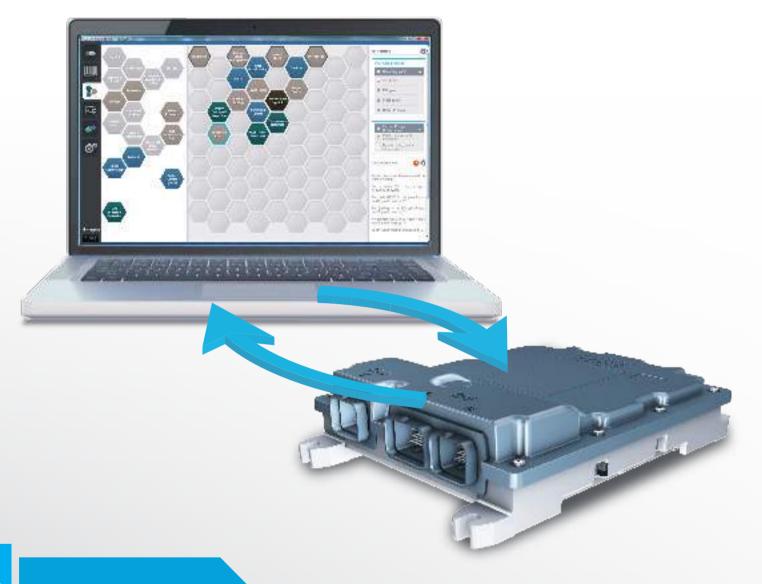
SD-Easy embedded functions

	Over pressure limitation	
PROTECTION Prevent failure of the	Over power limitation	
hydrostatic transmission	Engine over speed limitation	
	Over temperature	
PRODUCTIVITY	Combined braking (dynamic + hydraulic)	
Improve performance for	Travel / work mode	
increased productivity	Constant engine command for tools management	
	Safety start management	
	Hill Start	
SAFETY Ensure compliance with requlatory requirements	Automatic application of the parking brake	
regulatory requirements	Brake lights	
	Backing-up alarm	
	Anti-stall	
	Cruise control / Speed control loop	
COMFORT	Electronic inching	
Improve comfort for better productivity	Motor displacement automatic shifting	
	Command limiter	
	Display management	
	CAN broadcasting	
ENVIRONMENT Reduce environmental impact	Smart Automotive / Hydraulic automotive like	
	Friction joystick	
DRIVING ERGONOMICS		

Phases-Easy: Configuration and diagnostic tool

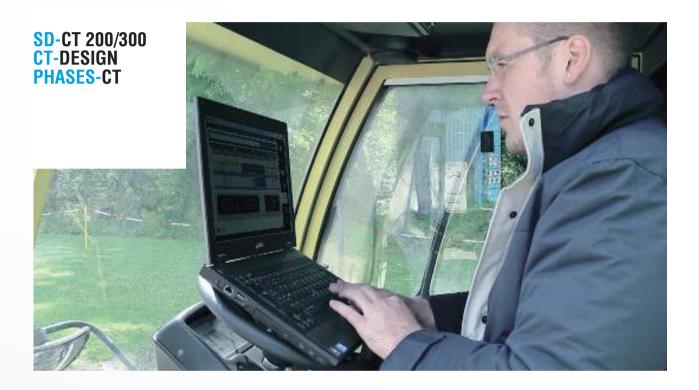
Installed on a computer running a Windows OS and connected to an ECU via its USB/Serial adapter, Phases-Easy is the diagnostic tool that allows you to communicate with the SmartDrive Easy ECU. Phases-Easy can be used to carry out configuration, optimization and maintenance operations for the hydrostatic transmission system in the best possible ergonomic conditions.


Configure your ECU


- Download embedded software into the ECU
- Set the parameters to get the expected behavior on the machine (acceleration/deceleration ramps, maximum speeds, engine speeds, ...)
- Upload/download parameter file to be able to manage different machines configurations with the same embedded software

2 Diagnose your ECU

- Check input/outputs status
- Check all the application variables
- Check error codes and descriptions
- Use the grapher to do measurements with up to six signals



SMARTDRIVE CT

Off-road and on-road applications Three CAN buses IP67 water proof E13 10R-04 12836 certified Ag Pl-d, Pl-d, SIL2 performance levels Generic embedded software Configuration and diagnostic tool

DESIGNED TO CONTROL THE MOST DEMANDING MACHINES

High level of performance

The SD-CT ECUs are compatible for use in both on-road and off-road applications, particularly because of their electromagnetic compatibility certified by their E marking and their safety-assurance architecture capable of reaching performance Ag-PI-d, PI-d and SIL2 level.

Calculation power

SD-CT ECUs are made efficient by incorporating an electronic architecture built around a 32-bit microprocessor and a 8-bit auxiliary microprocessor. They have a calculation capability compatible with your machines' safety, comfort and energy efficiency requirements. These technical characteristics provide access to sophisticated software functions that guarantee efficient and accurate control of your applications.

Communication

The SD-CT ECUs have large communication capabilities. The three integrated CAN buses allow you to share information (engine, hydraulic components, etc.), and configure and diagnose your machine without overloading the CAN buses. Equipped with 40 high-power inputs and 22 highpower outputs, they provide accurate control of the hydrostatic transmission.

Robustness

SD-CT ECUs are designed to be used in extreme conditions. Operational over a temperature range of - 40°C to +85°C [-40°F to 185°F], they also operate in the case of immersion of up to under one meter of water (IP67). Their electromagnetic compatibility (EMC), certified 'E', makes them compatible with the most demanding uses.

SD-CT 200/300 characteristics

		SD-CT 200	SD-CT 300	
Power supply	V	8 to 32		
Max. current	A	35,4		
Protection		IP	67	
Microprocessor	bits	32 + 8		
	ANA	11	17	
Inputs	FREQ	5	8	
	UNIV	9	15	
	STOR 2A	4	4	
	STOR 2,6A	0	4	
Outputs	PWM 2A	6	8	
	LSD 4A	0	3	
	LSD 5,2A	3	3	
Supply output	5V	1		
Microcontroller		2		
CAN Bus		:	3	
Certification		E13 10R-	04 12836	
		÷·	SIL2 level I (ISO 13849:2006) capable	
Operating temperature	°C [°F]	-40 to 85 [-40 to 185]		
Weight	kg [lb]	1,270 [2.76]		
Dimension L x l x h	mm [in]	236,2 x 1 [9.30 x 7.		

ECODRIVETM

Reduced consumption in work and road modes

The EcoDrive[™] solution is applicable to all machines with an electronic pump control and internal combustion engine control by CAN Bus.

Completely automatic, the EcoDrive[™] function requires no particular action from the driver and always selects the best combination of internal combustion engine speed and pump displacement.

Machines fitted with the EcoDrive[™] function are therefore much more eco-friendly, with reduced fuel consumption, CO₂ emissions and noise impact.

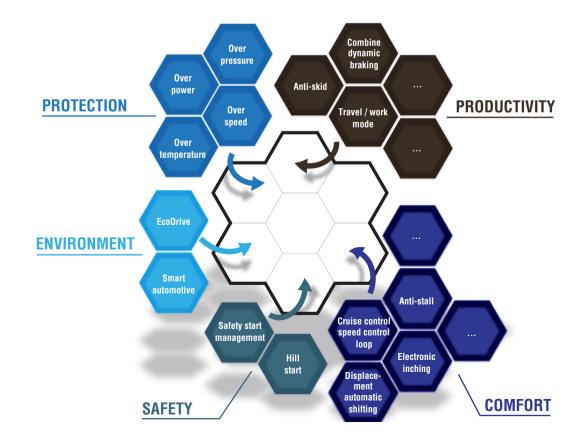
SD-CT 200/300 embedded functions

	Over pressure limitation
PROTECTION	Over power limitation
Prevent failure of the hydrostatic transmission	Engine over speed limitation
	Over temperature
	Combine braking (dynamic + hydraulic)
	Anti-skid
PRODUCTIVITY	Travel / work mode
Improve performance for	Constant engine command for tools management
increased productivity	2 pumps management (tandem or independent)
	Difflock management
	Set wheel circonference by CAN
	Safety start management
	Hill Start
SAFETY	Automatic application of the parking brake
Ensure compliance with regulatory requirements	Driver presence
	Brake lights
	Backing-up alarm (when going reverse)
	Anti-stall
	Cruise control / Speed control loop
	Electronic inching
COMFORT Improve comfort for	Motor displacement automatic shifting
better productivity	Enhanced shifting
	Command limiter
	Display management
	CAN broadcasting
ENVIRONMENT	EcoDrive™
Reduce environmental impact	Smart Automotive / Hydraulic automotive like
	Friction joystick
DRIVING ERGONOMICS	Acceleration joystick (CAN or Wired)
	Travel pedal and joystick

CT-Design: Design your own management software

CT-Design is a very ergonomic and easy to use interface to configure the software you will need for your application.

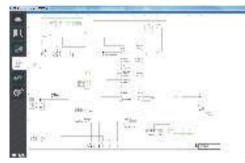
A Platform approach


The CT-Design software offers functions especially created for target pumps and applications.

Functions ready-to-use

With the CT-Design software, Poclain Hydraulics is making access to electronically controlled hydrostatic transmissions easier by allowing OEMs to create their own management software.


Thanks to a library of fully tested software functions, each customer using CT-Design can, without any further help, combine the necessary functions to generate their software in just a few clicks, and reduce development time and costs.


SmartDrive CT

CT Design is a PC software that allows to design your dedicated software in four very simple steps. Starting from a list of generic functions, you can select which ones you would like to use for your application. The generated software is then ready to use.

• Select your functions

2 Get a electrical schematic

$\ensuremath{\boldsymbol{\Theta}}$ Save your design

4 Get your Software

Phases-CT: Optimize and diagnose your hydraulic transmission

Installed on a computer running a Windows OS and connected to a SD-CT 200/300 ECU via its USB/CAN-bus adapter, the PHASES-CT software can be used to carry out configuration, optimization and maintenance operations for the hydrostatic transmission systems in the best possible ergonomic conditions.

In particular, it allows the user:

- to download the embedded software in the SD-CT 200/300 ECU
- to adjust and control the operating parameters of the SD-CT 200/300 ECU
- to calibrate and to check the operation of the sensors and driving devices connected to the SD-CT 200/300 ECU
- to diagnose the possible malfunctions of the hydrostatic transmission by displaying the error list

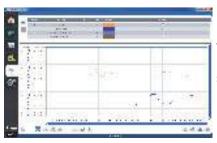
Its main assets are:

- a graphical interface, user friendly, multilingual and configurable
- the visualization of error messages
- direct access to software settings
- real-time monitoring of input and outputs values as well as their location on the SD-CT 200/300 connectors
- real-time monitoring of 12 machine parameters simultaneously in a table or a graphic
- recording of monitoring curves

·	5.45	104	
	2 2 4 4 1	Personality	<u></u>
1 m m	0	and the second	
1 State			
		10.0	
CHESSAR		2	
7		542	
- Mar		4	_
		;	=

Different access levels protected by passwords defines the access each user will have on Phases functions. Phases is available in nine languages

You can easily check the status of the inputs and outputs of your application by real-time monitoring



Guided processes allow driving devices to be calibrated for better accuracy

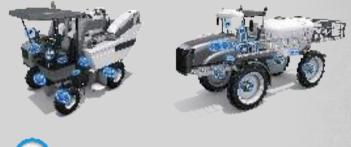
a merecelle	100 M	
CONDUCTION OF		
The second second		
MARCH CRIPPLAN CONTRACTOR		
P		
Carl Andrew State		
and the second state		
In case of the local division of the local d	1000	
THE REPORT OF TH		
a here the sector and		
COLCAR REPORT		
The second se		
THE YEAR		
104010010000000		
		the second se

Monitor error messages

Parameters set-up

For diagnostic or for measurement analyses, the grapher can monitor up to 12 signals at the same time

ELECTRONICS

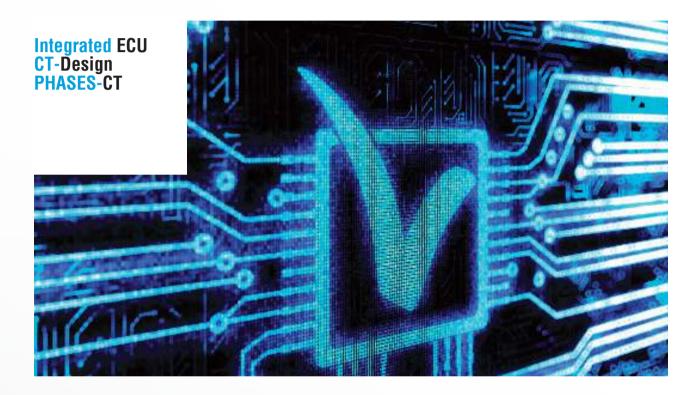

SmartDrive CT

SD-CT OFF-ROAD: ELECTRONIC ANTI-SKID SYSTEMS


Increase the off-road capability of your machines

The speed sensors incorporated in the hydraulic motors continuously measure the rotation speed of each powered wheel. The regulating computer compares those speeds and if necessary reduces hydraulic flow to the wheel which is slipping by means of a antiskidding valve.

This solution is applicable to all machines with at least two wheel drive.



Off-road and on-road applications Two CAN buses IP6K9K protection Ag PI-d, PI-d, SIL2 performance levels Generic embedded software Configuration and diagnostic tool

PMe ECU

DESIGN TO REDUCE DEVELOPMENT TIME AND COSTS

High level of performance

The PMe pumps are designed to meet all your requirements, point by point. The integrated Electronic Control Unit (ECU) gives you access to a high level of safety for your control systems.

The control software, pre-installed at the factory, contains all the necessary functions to meet your needs in term of performances, safety and comfort. Its communication capabilities make it easy to install and it integrates seamlessly with the rest of your machine.

Reduce your development times and costs

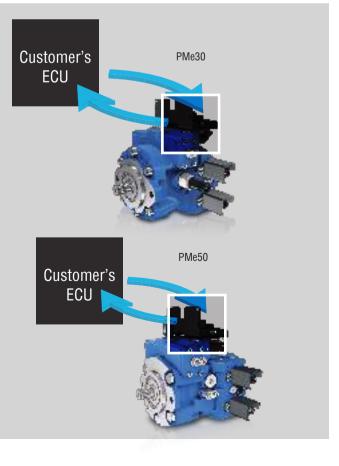
With the PMe pumps, you get a pre-connected electronic harness and embedded software in the integrated ECU. This Plug & Drive[™] system will reduce development times and costs for your transmission control system.

Integrated ECU characteristics

Power supply V		8 to 32	
Max. current A		17	
Protection		IP6K9K (ISO 20653)	
	ANA	7	
Input	DIN	5	
	UNIV	2	
	STOR 0,5A	2	
Outnut	STOR 2A	2	
Output	PWM 2A	4	
	LSD 4A	4	
Supply output 5V		1	
Microcontroller		1	
CAN Bus		2	
Performance level		SIL2 level Ag-PI-d, PI-d (ISO 13849:2006)	
Operating temperature	°C [°F]	- 40 to 100 [-40 to 212]	

The PMe pumps provide an automatic calibration of the minimum and maximum currents to allow having a better accuracy and controllability of the pump. Besides saving time by avoiding the currents setting at the end of the production line, and the simplicity of use, the pump current calibration provides the accuracy needed to get better driving performances in all conditions (speed control loop, shifting, antistal ...).

YOU ALREADY HAVE AN ELECTRONIC CONTROL UNIT IN YOUR MACHINE?


Use our PMe pumps in slave mode with the CAN Control option

With your CAN bus control (Master ECU), the PMe pumps can be used as a slave unit and allows you to benefit from the accuracy of the swashplate control without changing your main control.

The integrated ECU on the PMe pumps can be easily controlled by CAN as it is 100% compliant with the J1939 standard.

The master ECU sends the command at which it wants to set the pump and the PMe adjust the swashplate accordingly. The CAN messages redundancy allows for safe control of the pump.

The PMe pumps can also provide the plugged sensors' physical and electrical values (temperature, pressure, speed) via CAN bus to the master ECU.

PMe functions packages


The PMe pumps are available with a pre-defined list of software functionalities grouped in three packages.

Standard Package (Mandatory functions)	Driving Package (Enhanced driving functions)	Protection Package (Hydrostatic transmission protection functions)
Start-up check	Anti-stall	Overpressure protection
Command device (travel pedal, joystick or hydraulic automotive like)	Hill start	Overpower protection
CAN Joystick	CAN broadcasting	Engine overspeed protection
Proportional engine control	Speed control loop	Temperature protection
Fixed engine speed	Mixed (Automotive or Fixed) engine speed	
Driver presence	Shifting	
Brake lights		
Braking/Inching management	Coverel combinations are need	ible.
Diagnostic	Several combinations are possible:	
	 Standard package alone: mandatory w 	whatever the package choice

- Standard package + Driving package
- Standard package + Protection package
- Standard package + Driving package + Protection package

CT-Design: Design your own management software

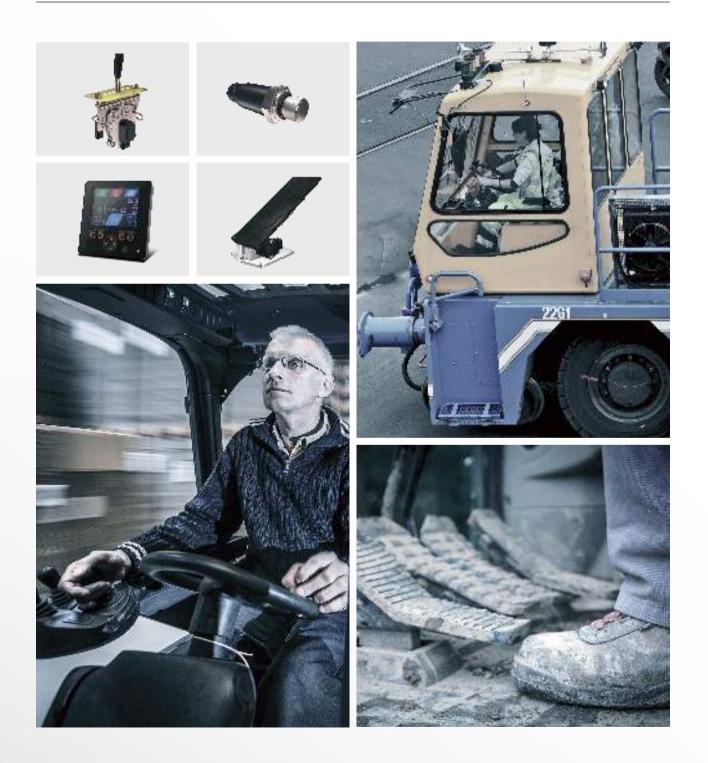
The CT-Desin is a very ergonomic and easy to use interface to configure the software you will need for your application. You drag and drop the functionalities you want to activate in PMe pump, then a design file is generated to be downloaded into the integrated ECU of the PMe pump.

ELECTRONICS

Phases-CT: Optimize and diagnose your hydraulic transmission

More information > Page 126

Installed on a computer running a Windows OS and connected to integrated ECU of the PMe pumps via its USB/CAN-bus adapter, the PHASES-CT software can be used to carry out configuration, optimization and maintenance operations for the hydrostatic transmission systems in the best possible ergonomic conditions.



ACTUATORS & SENSORS

Displays Pedals Joysticks Sensors

HARDWARES TO COMMAND AND CONTROL HYDROSTATIC TRANSMISSIONS

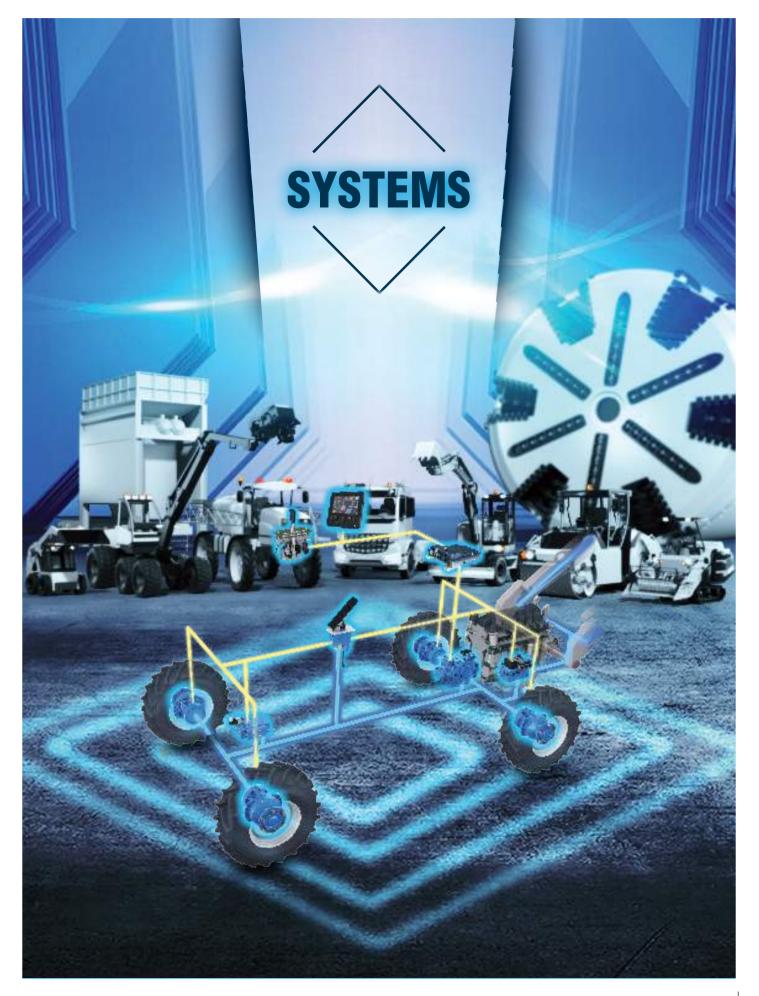
Displays

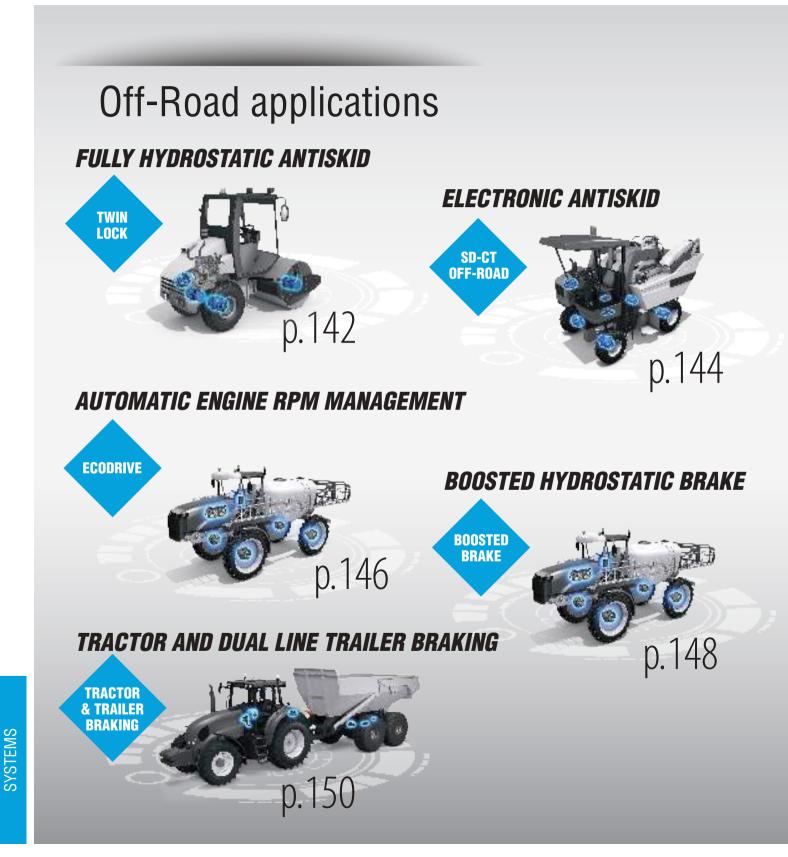
Visualize the main data of the hydraulic transmission: speed, pressure, temperature, error messages and more with our displays.

		SD-DISPLAY-2.8-CR0451	SD-DISPLAY-4.3-CR0452	
		Color display, allowing to display the status of your hydraulic transmission or assistance. 9 keys to navigate and to change parameters yalues. This display is delivered with an application software	Color display, allowing to display the status of your hydraulic transmission or assistance. 10 keys to navigate and to change parameters values. This display is delivered without software (using Phases-CT for downloading)	
Display size		2.8"	4.3"	
Display type		LCD TFT color, 320 x 240 pixels	LCD TFT color, 480 x 272 pixels	
Power supply	V	8 to 32	8 to 32	
Overvoltage	V	36	36	
Current at 24V	mA	70	100	
Operating temperature	°C [°F]	-20 to +70 [-4 to +158]	-20 to +65 [-4 to +149]	
Weight	g [lb]	170 [0.37]	220 [0.48]	
Max. dimensions	mm [in]	87,5 x 87,5 x 36,3 [3.44 x 3.44 x 1.42]	124,5 x 109,5 x 39 [4.90 x 4.31 x 1.53]	
Protection		IP67 (Front) / IP65 (Back)	IP67 (Front) / IP65 (Back)	
CAN Bus		1 (ISO11898, 2.0B)	1 (ISO11898, 2.0B)	
Layer2, CANopen, J1939		Yes	Yes	

Joysticks

Provide the drive speed command


		Friction joystick with center lock Friction joystick with		
		Joystick with center lock	Hall effect joystick with two opposite analog signals and a neutral switch	
Power supply	V	5	5	
Operating temperature	°C [°F]	-25 to +70 [-13 to +158]	-40 to +80 [-40 to +176]	
Weight	g [lb]	560 [1.23]	1 000 [2.20]	
Max. dimensions	mm [in]	189,1 x 82,5 x 60 [7.45 x 3.25 x 2.36]	135 x 160 x 75 [5.31 x 6.30 x 2.95]	
Protection		IP65	IP67	


* Prepared for "add-on" multifunction grip.

Pedals				
Provide the drive speed command			Wall pedal	
		Floor pedal		
		Pedal with dual output signal. Contactless sensor. Travel and brake control.	Pedal with potentiometer. Travel and brake control.	
Power supply	V	5	5	
Operating temperature	°C [°F]	-40 to +85 [-40 to +185]	-40 to +85 [-40 to +185]	
Weight	g [lb]	960 [2.11]	1 050 [2.32]	
Max. dimensions	mm [in]	247 x 97 x 160 [9.72 x 3.82 x 6.30]	-	
Protection		IP66	IP66	

Sensors

			1			
		Pressure sensors	Speed sensor	High resolution speed sensor	Temperature sensors	Steering sensor
		Allows to measure the pressure in the high pressure circuit from 20 to 600 bar [290 to 8,702 PSI]. Use to limit pressure and power to control the torque.	Installed in the motor, it allows to get rotation speed and direction infor- mation.	Installed in the motor, it allows to get high rotation speed and direction information.	Allow to check oil temperature to avoid over tempera- ture in the hydraulic circuit. Available in digital or analogic version.	It detects the machine's turning direction to the right, to the left or straight on.
Operating voltage	V	5	5	5	5	5
Operating temperature	°C [°F]	-40 to +125 [-40 to +257]	-40 to +85 [-40 to +185]	-40 to +85 [-40 to +185]	-20 to +120 [-4 to +248]	-40 to +85 [-40 to +185]
Protection		IP67 / IP6K9K	IP66	IP6K9K	IP67 / IP6K9K	IP66

Ready to use **Hydrostatic Solutions**

Poclain Hydraulics offers ready-to-use hydrostatic solutions for off-road and on-road applications.

Our expertise in hydraulics, mechanics and electronics enables us to understand your needs and provide value to your customers.

By entrusting us with your hydrostatic systems, you will save development time and cost, paving the way for more efficient, productive and safe machines.

On-Road applications

ALL WHEEL DRIVE FOR TRUCKS

CONSTANT AND LOW SPEED

Ready-To-Use Hydrostatic Solutions

The TwinLock[™] solution transfers the torque from the wheels that are slipping to the wheels with the greatest grip. It is the ideal compromise between a parallel circuit and a series circuit.

This solution is applicable on all machines with at least three-wheel drive.

FULLY HYDROSTATIC ANTISKID ENHANCE THE CROSSING CAPACITY OF YOUR MACHINES

Twin-Lock[™] motors

The Twin-Lock[™] solution is available from MS02 to MS50 motors.

More information > Page 12

By-pass valve

This valve can be used to by-pass one half of a Twin-Lock [™] motor to create a two speeds machine.

More information > Page 105

Hydraulic pump

With our wide range you will find the pump that meets the full needs of your application.

More information > Page 76

Twin-Lock[™] valve

Two valves are available in order to facilitate steering when Twin-Lock™ is used.

VDP with a mechanical control

More information > Page 90

Ground protection

Avoid wheel slippage and damage to ground.

Better productivity

Greater productivity of the machines due to better off-road performance.

Proactive operation

Provide excellent responsiveness of the solution with instantaneous torque transfer from the wheel with poor grip to the wheel with strong grip.

Reduced maintenance

Simplify maintenance with a 100% hydraulic solution requiring no electronic control.

PR-TL-SV with a hydraulic control

The speed sensors incorporated in the hydraulic motors continuously measure the rotation speed of each powered wheel. The ECU compares those speeds and if necessary reduces hydraulic flow to the wheel that is skidding thanks to the antiskidding valve.

This solution is applicable on all machines with at least two drive wheel drive.

AUTOMATIC ELECTRONIC ANTISKID ENHANCE THE TRACTION POTENTIAL OF YOUR MACHINES

Hvdraulic motors + Speed sensor

Any motor equipped with speed sensor or predisposition for speed sensor can be used.

More information > Page 11

Hydraulic pump

With our wide range you will find the pump that meets the full needs of your application.

More information > Page 76

Ground protection

Avoid wheel slippage and damage to ground.

Better productivity

Greater productivity of the machines due to better off-road performance.

High flexibility

Excellent flexibility of the solution, effective torque transfer from the wheel with poor grip to the wheel with strong grip.

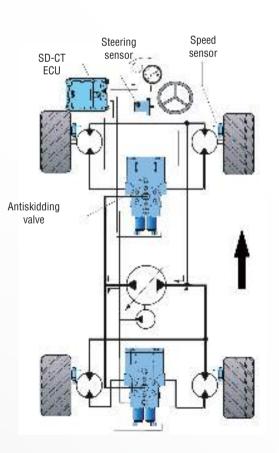
Antiskidding VMA valve

It provides regulation of the input flow of the two motors on the same axle.

More information > Page 90

Steering sensor

It detects the machine's turning direction to the right, to the left or straight on.


More information > Page 137

SD-CT ECU + Embedded software

The SD-CT ECU and its embedded software set-up, calibrates, controls and diagnoses the hydrostatic transmission.

More information > Page 122

ECODRIVE

The EcoDrive[™] solution is applicable to all machines with an electronic pump control and internal combustion engine controlled by CAN Bus.

Completely automatic, the EcoDrive[™] function requires no particular action from the driver and always selects the best combination of engine speed and pump displacement.

Machines fitted with the EcoDriveTM function are much more eco-friendly, with reduced fuel consumption, CO_2 emissions and noise impact.

AUTOMATIC ENGINE RPM MANAGEMENT REDUCED CONSUMPTION AND NOISE IMPACT

Hydraulic motor

With our wide range you will find the motor that meets the full needs of your application.

More information > Page 11

Hydraulic pump

Any pump equipped with an electrical control can be used for this solution.

Green Machine

EcoDriveTM reduces fuel consuption up to 15%, effectively reducing CO₂ emission.

Easy Machine

 $\mathsf{EcoDrive}^{\mathsf{TM}}$ is totally automatic and allows the driver to keep his mind on the job.

Quiet Machine

By reducing engine speed, $\mathsf{EcoDrive}^{\mathsf{TM}}$ reduces machine noise emission.

SD-CT ECU + Embedded software

The ECU continuously receives the engine load information through CAN bus and adapts the engine speed and the pump displacement to achieve the lowest possible rpm while meeting the load and power requirements. Actual engine power always matches engine power required by machine operation.

More information > Page 122

BOOSTED BRAKE

Boosted Brake[™] offers increased hydrostatic braking capabilities. It meets regulation requirements in terms of braking distances, while reducing dynamic brake usage and minimizing engine loading.

Applicable to all machines subject to high and/or repeated deceleration, both on the road and in the field, Boosted Braking[™] is especially recommended for machines with a low engine braking capability.

BOOSTED HYDRAULIC BRAKE MORE SAFETY FOR YOUR MACHINES

Hydraulic motor

MHP 11 to 27, MS18-E18 and MS35 can be equipped with Boosted Braking function.

More information > Page 11

Hydraulic pump

Any pumps equipped with an electrical control can be used for this solution.

More braking capacity

Reduces braking distances in road mode and off-road mode.

Lower maintenance costs

It preserves (or limits use of) friction brakes and requires no maintenance.

More engine protection

Saves engines from over-speed. It maintains hydrostatic braking capability even for Tier IV / Stage 4 engines with poor load retaining capability. Maintenance operations are therefore less frequent.

Easy integration

The solution is integrated into the hydraulic motors without any extra piping.

SYSTEMS

A simple spool is integrated into the motor

Motor without Boosted Brake

Half of the hydrostatic braking torque is used when the motor is in half displacement.

Motor with Boosted Brake All the hydrostatic braking torque is used even if the motor is in half displacement.

TRACTOR & TRAILER BRAKING

Poclain Hydraulics smart components meet the new EU2015/68 regulation requirements and help you get the most of your braking system:

- Trailer load measurement flexibility
- Easy integration of the components
- Braking rate adjustment through parameters
- Same components across your range
- Potential for additional functions (Hillstart, Parklock...)

TRACTOR AND DUAL LINE TRAILER BRAKE SOLUTION FOR 1, 2 OR 3-AXLE TRAILERS

TRACTOR SIDE

Steering assist brake valve

- Four wheel braked tractor
 Automatic connection
- riht/left

More information > Page 99

Parking/emergency brake valve

- Parking brake modulating valve
- · Park lock option

Dual line trailer brake valve

- A single valve across your range of tractors
- A single valve to cover existing trailers (single line, CUNA) and future dual line trailers
- Leakage detection on the control line and leakage stop
- Enhanced park brake test function
- Automatic re-fill of the trailer accumulator each time the tractor stops

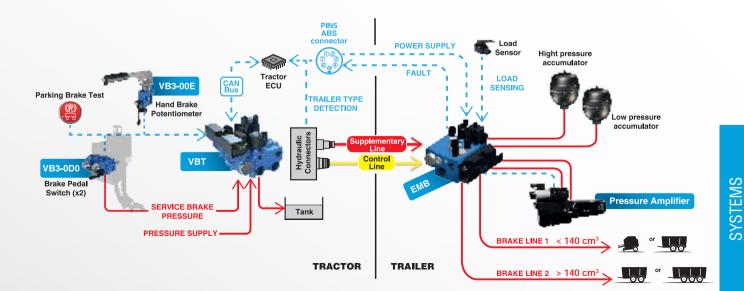
TRAILER SIDE

Dual line trailer brake valve • Energy and braking

 Energy and braking management

More information > Page 99

Pressure amplifier


• For trailer with two or three axles

Load sensor

• The weight information can come from any sensor type: shok absorber pressure, position sensor, load cell, etc

ADDIDRIVE

Pioneering All-Wheel-Drive solution combining the best of off-road and on-road worlds Already adopted by various truck manufacturers Suits all types of trucks Integral solution reducing development time Peace of mind thanks to higher efficiency

PIONEERING ALL-WHEEL-DRIVE SOLUTION GO ANYWHERE WHATEVER THE WEATHER

MF Hydraulic motor

Fitted on the front wheels, the MF motors provide traction or retaining torque as needed.

More information > Page 56

SD-CT200 ECU + Embedded software

The ECU manages communication and additional functions.

- Automotive standards / IP67 Protection / PI-d / SIL2.
- Compatible with the CAN truck network.

More information > Page 122

PW Variable Pump

Powered by the engine or the gearbox PTO, the PW pump generates and provides hydraulic power to the MF motors.

Addiflow™ control valve

The AddiFlow™ control valve ensures the safety and management of the activation, release and free-wheeling of MF motors.

Performance

- Increased payload capacity compared to a mechanical all-wheel drive truck
- Easier to drive over obstacles with or without load
- · Allows for closer approach to work site
- The boost at start function helps the truck to start in difficult conditions, in forward and reverse directions, without forcing the clutch
- Limited impact on fuel consumption compared to a standard truck

Safety and reliability

- No risk of getting stuck due to traction loss thanks to the transfer of the rear torque to the front
- Automatic disengagement at 30 kph [18.6 mph]
- Better maneuverability thanks to traction on the main axle when driving around corners and in the event of poor traction when driving in a straight line
- Adapted to extreme temperatures from -40°C to +40°C [-40°F to +104°F]

Comfort

- Easy access to the driver's cabin, with all the comfort of a standard truck
- · Lower center of gravity to improve driver comfort
- Enhanced turning radius compared to a standard truck or mechanical all-wheel drive
- · Stable truck and trailer coupling

Versatile

- Compatible with all truck brands and models
- Compatible with the existing trailer fleet
- Enables one truck to be used for various tasks

Vehicles equipped with CreepDrive[™] feature two independent transmissions: the standard mechanical one and a hydrostatic one.

The mechanical transmission is used for traveling on the road, while its hydraulic counterpart is used for working at low and constant speed.

Shifting from one to the other is done by activating a switch.

LOW AND CONSTANT WORKING SPEED TWO INDEPENDANT TRANSMISSIONS IN ONE VEHICLE

CDM motor

Compact and lightweight, it can easily be inserted into transmission shafts.

More information > Page 60

Exchange valve VE60

Used to deflect a part of the oil to the cooling system.

More information > Page 93

KVC3/2 piloting valve

Pilots the speeds change (automatic shifting managed by ECU - SmartDrive).

More information > Page 105

Powered by the engine or the gearbox PTO, the pump generates and provides hydraulic power to the CDM motor.

SD-EASY & Embedded Software The ECU manages communication and additional functions.

Independent of engine speed

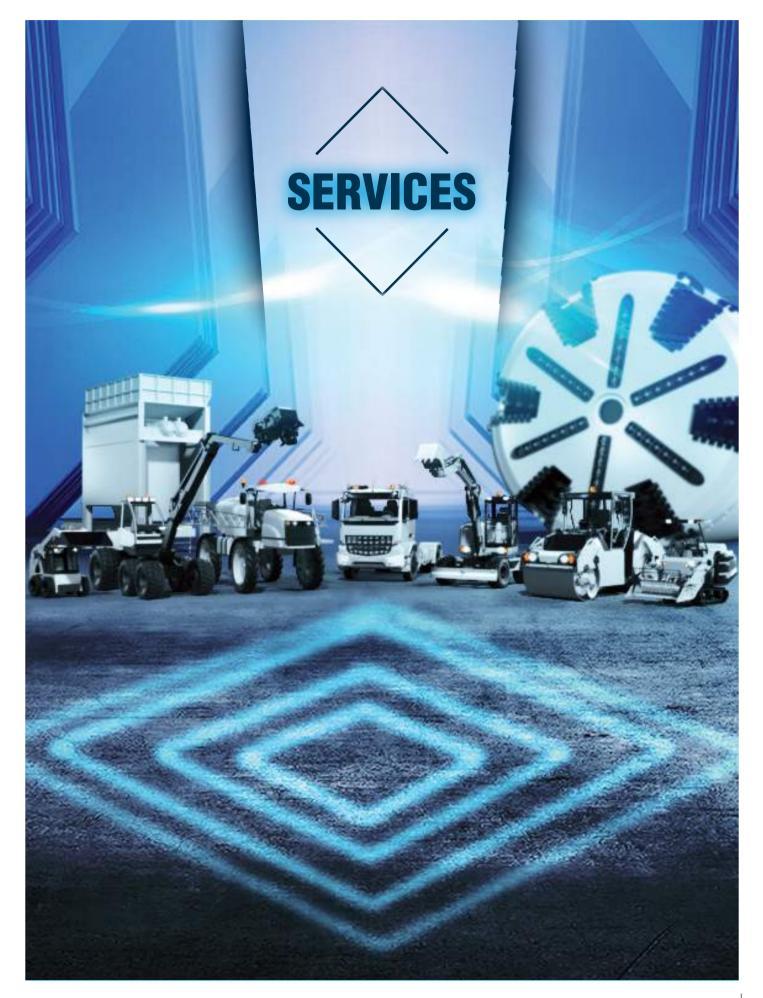
Working speed is low and constant regardless of engine rpm in forward and reverse direction, even on uneven roads.

Easy integration

Light and compact to fit into any mechanical transmission.

Lower maintenance costs

Prevents brakes, clutch and transmission from wearing.


CreepDrive box: Remote control

It simplifies the installation of the Creepdrive system on vehicles. It includes the SD-Easy ECU, a joystick, a display and start/stop/emergency buttons.

Poclain Hydraulics is a partner you can rely on to accompany you through the design and sizing of your hydrostatic transmission.

Whatever your expertise in hydrostatics, whatever your application, we offer you our 60 years of experience at all stages of your application's lifetime. From design to after-sales, we guarantee the highest level of quality throughout our collaboration.

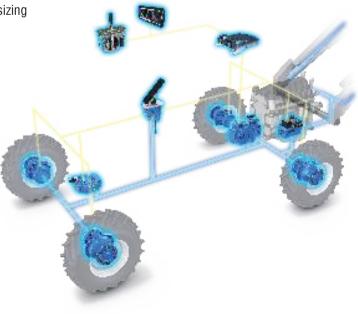
Our services include: delivery of systems for a complete transmission, start-up of new transmissions with on-site commisionning, troubleshooting, full testing of vehicles at our proving grounds in France, software customization, wiring services on prototypes, repair, spare parts delivery, trainings.

- > Poclain Hydraulics commits to attaining results.
- > Your transmission will perform at an optimum level.
- > Time to market and technical risks are reduced.
- > Your application will be followed throughout its lifecycle

Poclain hydraulics Services Making Your Life Easier

SYSTEM OFFERING TO FACE EURO STAGE V REGULATION

Machines for Construction, Agriculture, and Material Handling will all be in the scope of the new standard.


One of the most impacted power ranges will be the engines between 19 and 37 kW (25 and 50 HP). Many of them will require technology such as common rail fuel systems and exhaust after treatment devices such as Diesel Particles Filter or/and SCR. In short, OEMs will have to:

- Adapt to tighter space constraints to install exhaust after treatment devices.
- Manage the additional costs linked to those new devices.
- Integrate the higher Total Cost Of Ownership(TCO) due to higher maintenance costs on Stage V engines mainly for Rental.

One of the possible ways to minimize the impact of this regulation is to downsize the diesel engine used on the machine below the 19 kW threshold. When this is possible, it has to be done without sacrificing machine performances.

To make this change possible, Poclain Hydraulics has been improving the efficiency of a great part of its hydrostatic transmission offering over the last five years. Hydraulic loss reduction opens the door for diesel engine downsizing without compromising the machine performances.

- > The higher efficiency of Cam-lob technology versus high speed motor with gearbox bridges a first gap in this quest of highly efficient hydrostatic transmissions.
- > The Poclain Hydraulics PM pump offering provides opportunities to further reduce hydraulic losses from the transmission.
- > The electronic control of hydrostatic transmissions gives more possibilities to ICE downsizing without sacrificing machine performances.

FAST DELIVERY PROGRAM FOR MOTORS, PUMPS AND VALVES

Visit our dedicated web page www.poclain-hydraulics.com/en/services/phast

> The sales of PHast are subject to Poclain Hydraulics' General Terms & Conditions of sales.

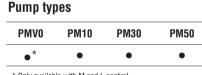
MS and MI Motors

Poclain Hydraulics is committed to supplying a number of standard motors within 15 business days, excluding transport.

Making their selection from a predetermined list of motors, machine manufacturers can choose from wheel motors (for sizes 02 to 125) or shaft motors (for sizes 11 to 125), in a fixed displacement or double displacement version, with or without a brake. All motors are equipped with a pre-disposition for speed sensor. Pre-configured motors are equipped to guarantee a maximum level of performance.

> Order limited to four PHast motors, per motor size.

Motor types


MS02-E02	MS05-E05	MS08-E08	MS11-E11	MS18-E18	MS35	MS50	MS83	MS125
•	٠	٠	•	•	٠	٠	٠	٠

PM pumps

Poclain Hydraulics is committed to supplying a number of standard pumps within 10 business days, excluding transport.

Making their selection from a predetermined list of pumps, machine manufacturers can choose from pumps with mechanical servo control (A) or hydraulic servo control (S) or electro proportional servo control (P) or electro proportional servo control with feeback (Q). All pumps are equipped with a high pressure relief valve setting, internal charge pump and charge relief valve setting, SAE A flange for the auxiliary mounting pad and a flushing valve.

> Order limited to one pump per part number per customer and per month.

MI250

[•] Only available with M and L control

Open Loop Valves

Poclain Hydraulics is committed to supplying a number of standard valves within 5 business days, excluding transport.

> Up to 5 pieces for each part number delivery within 5 days max. > Up to 50 pieces for each part number delivery up to 4 weeks.

Valves type

Directional control valves	Bankable mounting	Vertical stacking	Chek valves	Pressure control valves	Flow control valves
KV-6K/2-6 KV-6/2-6					
KVC-3/2-10	KVM	KVM-VV-6	NOV		DTP
KV-8/3-6	OB-KVM-6	KVM-NDV-6	VP-NDV	VP-RT	TVTC
KVH-6/2 KV-4 Cetop KVC	ZB-KVM-6	KVM-NOV-6	VP-NOV		TVTP

WE SUPPORT YOU EVERYWHERE, EVERYDAY

safety and environment standards. Our network of 12 internal and preventive maintenance programs. and 25 external Certified Repair Centers (CRC) cover all the main countries where our customers need local services.

an RMA (Return Material Authorization) management sys- States, Europe and Asia, to ensure the best customer satistem. To support customer service, our network relies on our faction. Quotes are sent within 24 hours and we can arrange after-sales department, which regularly distributes documen- express delivery if required. tation about new products, updates existing brochures and supports the network via our product expert hotline (motors, pumps, valves and systems).

Our certified repair processes meet our demanding quality, We also offer reman replacement programs, express repairs

Our After-Sales Customer Logistics Agents, located in all our subsidiaries, manage requests for original spare parts, which Our CRC manage warranties and customer requests through are distributed from our logistics platforms in the United

To find the nearest Certified Repair Center go to our dedicated web page www.poclain-hydraulics.com/en/services/certified-repair-centers

A WORLDWIDE SALES NETWORK

More than 200 distributors in the world

More information

To find the nearest distributor go to our dedicated web page www.poclain-hydraulics.com/en/contact-us/distributors

BRAZIL

POCLAIN HYDRAULICS CPSH LTDA Rua Francisco Leitão, 469 Conj. 1508 - Pinheiros CEP 05414-020 São Paulo Tel. : +55 11 2615 8040

CHINA

POCLAIN HYDRAULICS T&CT (BEIJING) CO, LTD Room 606 Block A of Building one Quanshitiandi Plaza No. A50 Wangjing West Road Chaoyang District Beijing, Post code: 100102 Tel.: +86.10.64.38.66.18

POCLAIN HYDRAULICS (SHANGAI) CO, LTD Factory Building n° 11, Phase II Shuhui Park N° 275 Qianpu Road, Songjiang District Shanghai 201611 Tel: +86 21 37 00 34 15

CZECH REPUBLIC

POCLAIN HYDRAULICS SRO Ksirova 186, CZ 619 00 Brno - Horni Herspice Tel. : +420 543 563 111

FINLAND

POCLAIN HYDRAULICS OY Vernissakatu 6 01300 Vantaa

FRANCE

POCLAIN HYDRAULICS FRANCE SAS Route de Compiègne 60410 Verberie Tel. : 03 44 40 78 64 03 44 40 79 66

POCLAIN HYDRAULICS FRANCE NANTES 57, rue des Vignerons 44220 Couëron Tel. : 02 40 85 52 52

POCLAIN HYDRAULICS FRANCE LYON 58, avenue Chanoine Cartellier Le Cleveland III Z.A. Les Basses Barolles 69230 Saint Genis Laval Tel : 04 78 56 67 44

GERMANY

POCLAIN HYDRAULICS GMBH Werner-von-Siemens-Str. 35 64319 Pfungstadt Tel. : +49 6157 / 9474-0

INDIA

POCLAIN HYDRAULICS PVT. LTD 3rd Floor, No 52, Agastya Arcade 80 Feet Road, Opposite MSR Hospital Bengaluru 560 094 Tel. : +91 80 4110 4499 +91 80 23417444

ITALY

POCLAIN HYDRAULICS SRL Via Remesina int, 190 41012 Carpi (Modena) Tel. : +39 059 655 0528

JAPAN

POCLAIN HYDRAULICS KK 4-2, Miyoshi cho, Naka ku, Yokohama, Kanagawa 231-0034 Tel. : +81-45-341-4420

POCLAIN HYDRAULICS KK #709, in Toyo Building, 3-2-5, Hachiman-dori, Chuou-ku, Kobe-shi, Hyogo-ken, 651-0085 Tel: +81 78 891 4446

KOREA

POCLAIN HYDRAULICS YH #104-1010 Sindorim Prugio 337 Sindorim-dong, Guro-gu, Séoul, 152-748 Tel. : +82 2 3439 7680

NETHERLANDS

POCLAIN HYDRAULICS BENELUX BV Florijnstraat 9 4879 AG Etten-Leur Tel. : +31 76 502 1152

RUSSIAN FEDERATION

POCLAIN RUS, LLC Novaya Basmannaya street, 28, building 2, office 12 105066 Moscow Tel. : +7 (495) 105 9301

SINGAPORE

POCLAIN HYDRAULICS PTE LTD 10 Anson Road #35 - 10 International Plaza, 079903 Tel. : +65 6220 1705

SLOVENIA

POCLAIN HYDRAULICS DOO Industrijska ulica 2 SI-4226 Ziri Tel. : +386 (0)4 51 59 100

SOUTH AFRICA

PO Box 1272 Ballito, KZN Tel. : +27 82 300 0584

SPAIN

POCLAIN HYDRAULICS SL C/ Isaac Peral nº8-10, Local nº3 08960 - Sant Just Desvern (Barcelona) Tel. : +34 934 095 454

SWEDEN

POCLAIN HYDRAULICS AB Sjöängsvägen 10 19272 Sollentuna Tel.: +46 8 590 88 050

THAILAND

2/51 BangNa Complex ; 11th Floor, Thosapol Land Building 4 Soi Banga Trat 25, Bangna, Bangkok 101260 Tel. : +66 (0) 2173 6026 Ext. 220

UNITED KINGDOM

POCLAIN HYDRAULICS LTD Nene Valley Business Park Oundle, Peterborough, Cambs PE8 4HN Tel. : +44 183 227 3773

USA

POCLAIN HYDRAULICS INC 1300 N. Grandview Parkway PO BOX 801 WI 53177 Sturtevant Tel. : +1.262.321.0676 5720/5721

WORLD LEADING SPECIALIST IN HYDROSTATIC TRANSMISSIONS

www.poclain-hydraulics.com

